

Fall 2019 NW 2-3 Pinnental 1 Lec The 9:30-11 Soda 277 The 11-11:50 Barnin's 185

$$\$$$
 [30] 19 - Lecture : NamesAnnouncementsNames, Assignment, User - Defined Functionscontrol L = disapper $?77 - \varphi$ gettion prompt* import names! 1280 on turbing!- Uctax 3 is video only $pow (2,3) = \$$ > 77 form math import pi $pow (2,3) = \$$ > 77 form math import pi $pow (2,3) = \$$ > 77 form math import pi $pow (2,3) = \$$ > 77 form math import pi $pow (2,3) = \$$ > 77 form math import pi $pow (2,3) = \$$ > 77 form math import pi $pow (2,3) = \$$ > 77 form math import pi $pow (2,3) = \$$ > 77 form math import pi $pow (2,3) = \$$ > 10 $pow (2,3) = \$$ > 10 $pow (2,3) = \$$ > 77 form math import pi $pow (2,3) = \$$ > 10 $pow (2,3) = \$$ > 277 form math import pi $pow (2,3) = \$$ > 277 form math import pi $pow (2,3) = \$$ > 277 form math import pi $pow (2,3) = \$$ > 216 math pi $pow (3, 2) = 10$ > 216 math pi $pow (3, 2) = 10$ > 216 math pi $pow (3, 2) = 10$ > 216 math pi $pow (3, 2) = 10$ > 100 math pi $pow (3, 2) = 10$ > 100 math pi $pow (3, 2) = 10$ > 100 math pi $pow (4, 2) = 10$

Environment Diagrams			
visualize interpreter's process	pi 7.1415	f= min()	
Assignment Statements:	global frames	Lo would try to	compute the function
1 7 2 1	217	F = min	
2 6=2	bl2	would straig	nt set the value
3 b, 2=2+b, b	212		
	623		
Execution rule for assignment sta	atements:		
I. evaluate all expressions to the v	ight of = from	left to right	
2. bind all names to the left of =	= to the result	ing values in th	e current frame
Defining Functions			
Assignment is a simple means of	abstraction: bi	nds name to va	the
Function definition is a more powerth	ul means of al	ostraction = binds 1	name to expression
def < name> (< formal paran	nekersz):	ignature: # of argumes	is piken
return < return express			iconal process expressed by
Execution procedux for def statements:		2 functi	
Procedure for calling] applying user defi	ned functions		
1. creates a function with signature.	<name> (<formal< td=""><td>parameters>)</td><td></td></formal<></name>	parameters>)	
2. Set the body of that Function to			first line
3. bind <name> to that Function in</name>			
Calling User-Defined Functions			
Procedure for celling/applying used defined	t functions		
1. Add 2 local frame, forming 2 local envi	ivonmont		
2. Bind the fundrian's formal parameters	to its arguments	in that frame	
3. Execute the body of the function i			
		uilt-in function	* function's sig
1 from operator import mul	Global frame	→func mul()	has all info needed
2 def square(x): 3 return mul(x, x) function call		→func square(x)	to creak a local
4 square(-2)		User-defined function	fame
Formal paramet	er X-2		
bound to argum	ent value 4	Return value not a binding!)	

Looking Up Names in Environment

Every expression is evaluated in the context of an environment.

So Far, the current environment is either:

the global frame alove, or

2 local frame, followed by the global frame

* Important!

An environment is a sequence of frames

A name evaluates to the value bound to that name in the earliest frame of the current environment in which that name is found.

· first looks for name in that local frame

if not found, look for it in global frame

Largument

Conditional Statements

A statement is executed by the interpreter to perform an action.

compound statement:

Lab 2 Cashcown Noks		
Division		
True Division: 1	Floor Division : 11	Modulo: 20
(decimal division)	(integer division)	(remainder)
7 115	7115	7 1 2 5
0-2	0	
7 25/4	7 29/4	> 252 4
6.25	6	λ
7 4 2	7 411 2	> 422
2.0	2	0
> 510	> 5110	7520
Zero DivisimEmor	Zen Division Error	Zero Division Enor

* useful technique involving 2 operator : check if # divisible X9, y == 0 X 82 == 0

& divisible by y ~ divisible by 2

Functions

can make function to abstract a line of shuff def too (x): 7 foo (1)

return x * 3 + 2 5

Z applying function is done with call expression

Caller Expressions

2dd (2, 3)

operator operand

Evaluate a function:

1. Evaluate the operator, and then the operands (from left to right)

2. Apply the operator to operands (the values of operands)

* if msked expression, apply to inner operand then outer operand

Return VS- Print

. if executes return statement, then function terminates immediately

if reachus end of function body wlout return - returns None

print just prints in Terminal, would terminating

* print displays lext without quoks, return will preserve quokes

(outrol

Boolean Operators

- and evaluates to true only if both operands evaluate to true
- Lo atteast one is false then evaluates to false
- · or evaluates to True if atleast one openand is true
 - Lo all are false then evaluates to fake
- · not evaluates to true if operand evaluates to farse
 - Lo evaluates to false it operand evaluates to true
- er. True and not False or not True and False
 - Thu 4, Thu or Fally and False
 - Twee or Folke
 - Order of Operations for Boolean
 - · not highest priority
 - . and
 - · or lowest phoniby

Shor Circuiting.

- Operator: checks if: Evaluates left to right: Example and all values true first false value false i 10 - false or alleast on true first true value true or 10 - true
- * it and is or don't short-circuit, then they return last value

IF - Statements:

- if n>3:
 - return True
- else:
- rehum talk
- While Loops.
 - while (blah):
 - do blah

9/4/19- Lecture: High-Order Function	Announcements
Herstion Example	· HW 1 due threes 2/5
The Fibonacci Sequence	· Hog due thurs 9/11
0, 1, 1, 2, 3, 5, 8	checkpoint due 9/9
indux: On 1m 2m 3m 4m 5m 6m	additional topics lecture:
def fib (n):	214 5-6 wed 3106 Etche
pred, curr=1,0 pred, curr=0,1 # oth and 1th Fib #5 fib pred k=0 k=1 # curr is kth Fib #	
while k <n:< td=""><td></td></n:<>	
pred, cur = cur, gred + curr q kl	
K=K+1	
return curr to for assignment statement, vic	ght always done before left
Environment Diagram	
also takus GF	
into account fib fib func fib (n) p=g fib	- func fib(n) g=g-
on volue! pred LX & * * * & 3 pred Lo	Χχι
curr 1x * * * * 3 Curr 1/	
K B K & K KS KLY	2/3/4
rv LS rv L3	

Designing Functions

A Eurocion's domain is the set of all inputs it might possibly take as arguments

A function's range is the set of output values it might possibly return

"A pure Function's behavior is the relationship it creaks between input and output

De	FSQUAR	(x)	Def 1	fibl	(N	

D: x is real number D: x is real number

R: non-neg real number R: returns tib number

RV: square of input RV: Nth fib number

A Funde to Design Function

hive each function exactly one job

Don't repeat yourself (DRY). Implement a process just once, but execute many times

Define functions generally

Higher-Order Functions
Generalize Patterns with Arguments
Regular geometric shapes relate length and area
SWARKS.
Are: $1 \cdot r^2 = \frac{342}{2} \cdot r^2$
Finding common structure allows for shared implementation
def area-squar (r):
return r * v
def and circle (r) repeating oundires w/ the
return rytra pi assert statement a return rytr
det are heragon (r) Park (
Yealum 19# 2* 597(3)/2
assert 273, 'Mathi is Broken'
- allows to test for artain conditions that aren't allowed
def and (r, shape constant)
assert v>0, 'A longth must be positive'
rum r*r* shape constant
det and square (r)
return area (x, i)
dut mez_ circle (1)
(ig r) and muth
det axe- hexagon (r)
rchum 2403 (x, 3* 5945(3)/2)
<u>Generalizing</u> Over Computational Process
The common structure among functions may be a computational process, rather than a number s
$\sum_{k=1}^{2} k = (+2+3+4+5) = 15$
F1

$$\sum_{k=1}^{5} k^{3} = [^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} = 225$$

$$\frac{5}{2} = \frac{8}{100} = \frac{8}{3} + \frac{8}{35} + \frac{8}{91} + \frac{8}{195} + \frac{8}{323} = 3.04$$

$$k=1 = (9k-3)(9k-1) = 3 + \frac{8}{35} + \frac{8}{91} + \frac{8}{195} + \frac{8}{323} = 3.04$$

def sum noturels (n): def sum cuses(n): and sums first a natural humbers tobl, k= 0,1 777 sum_naturals(s) while KG=N: 15 total, K .= pow (K, 3), K+1 un m return total total, K= 0,1 while K<=n def identity (K): total = total + K vehum K K= K+1 def whe (K): return pow (K, 3) return total def summation (n, knm): def pi-term(x): tobl, K = 0,1 return 8 | mul (4* K-3, 4* K-1) while KC= n. hotal, K = hotal + form (K), K+1 def make adder (h): return total "Return 2 function that take K def sum_naturals(n): and returns K+N W return summation (n, identity) def zedder (K): def sum cubes (m): return summation (n, cube) return K+N return adder Make_adder(1) (2) Function as a return value (Make adder (1) f = make_adder (2000)(13) adder (2) (0002) make adder (2000) func make adder (m) adder (B) The Purpose of High-Order Function orf= make adder (2000) Functions are first dass: Functions can be manipulated as f(13) = 2013 values in our programming language Higher-Order Functions: A function that takes a function as an argument value or returns a function as a return value Higher-Order Functions: · Express general methods of computation · Remove repitition from programs Reporte concerns among functions

Print vs. Reham Statement

 def f():
 \$\$ call function -* head f()

 victum "hello"
 if just f, will show ishare function is

 def g():
 \$\$ x = F() -* returns nothing X -* "print"

 y = g() -* prints hello
 y = shows nothing

Control

repeat chunks of code

· infinite loop - won't ever tell you if enored

Environment Diagrams

· always start with the global frame

- if function never included return, you don't need to add them either

· operand should always be a value

· parent of function is where it's defined, not called

· dou't leave any brackets blank

· don't open new frame for built-in functions

9 6/19-Lechure: Environments

- · Every user-defined function has a pasent frame (often global)
- . The parent of a function is the frame in which it was defined
- every local frame has a parent frame (often global)
- . The parent of a frame is the parent of the function called

How to Draw on Environment Diagram

When function is defined?

create a function value; func <name> (<formal parameters>) [parent= <parent?]

Its parent is the current frame.

Bind chames to the function value in the current frame

When 2 function is called:

- I. Add a local frame, fitted with the <names of the Function being called
- 2. Copy the pount of the function to the local frame: [parent-2 < lanel >]
- 3. Bind the <formal parameters > to the arguments in the local frame
- 4. Execuse the body of the franction in the environment that starts with the local frame

An environment is a sequence of formes

. The environment created by calling a top-level function (no def within def) consists of one local frame, followed by the global frame

9/11/19 Lecture: Design	Announcements
Functional Abstraction	
def square (x): def sum squares (x,y):	
return squarely)	
What does square mud to know about square?	
· square - one argument yes	
· square - intrinsic name has	
· computes square of humber yes	
Computs squar w mul no	
det square(x): det square(x):	
return pow (x, 2) return mul (x, x-1) + 2	

Choosing Names

- Names don't matter for connectness but matter for composition
- should convey meaning or purpose
- type of value bound best documented in hundrian's docstring
- hypitally convey their effect, their behavior, value returned

Which Values Deserve a Name

- Repeated compound statements
- Meaningful parts of complex expressions:

Max Noming Typs

- Names can be long if they help document your code
- Namus can be short if they represent generic quantities

9/12/19 Discussion Notes

Lookup Rule Reminders

- 1. Look for vor in current frame go slowly
- · don't copy objects on night side
- assign parents
- · label frames correctly
- "it most likely will not enor "if you have time, check work

9/13/19 Lecture - Midhm Examples

9/18/19 - Lecture : Recursion

Recursive: A function is called recursive if the body of that Function calls itself, either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Digit Sums

```
2+0+1+9=12
```

```
· If a number is divisible by 9, then sum_digits(2) is also divisible by 9
· last it of cred card is sum of cred if digits
```

```
Sum Dig wlout while:

alf split(n):

vchum nll 10, 42 10

duf sum_digits(n):

if nc 10:

vchum n

elsc:

all_but_last, last = split(n)
```

```
return sum digits (all - but - last) + last
```

```
Anatomy of Recursive Function
- def statement header similar to other functions
- conditional statements check for base case
```

```
def split(n):

return n || 10_1 n \geq 10

def sum_digits(n):

if n < 10:

return n

else:

all_but_last, last = split(n)

return sum digits (all_but_last) + (ast)
```

Environment Diagrams and Recursi	le [filds] Frame] bet but _ bet (x) p=g
def fact(n):	(FI: 60+ (0-9)) N.3
if n= 20:	WB
rehum l	(F2: fat (0=9)] N(2
	w 12
else:	(F3: Fac (q-9)) n L
rchum n * bot(n-1)	wit
bct(s)	[F4; 6ad (q-a)]
	hlo will
- fact is called multiple times	
different frame opened for some	hunchion
Iteration vs. Recursion	
<u> </u>	
def fact_iter(h)	def (sct (n):
bbl, k = l, l	it n==0;
while ksn:	return 1
bbl, k = bbl + k, kH	و(ي:
return total	return n * fact(n-1)
the the second sec	$1(1)$ if n_{20}
$w_{3}w_{1} : \frac{w_{1}}{m} : \frac{w_{2}}{m} : \frac{w_{1}}{m} : \frac{w_{2}}{m} : \frac{w_{1}}{m} : \frac{w_{2}}{m} : \frac{w_{2}}{m} : \frac{w_{2}}{m} : \frac{w_{2}}{m} : \frac{w_{2}}{m} : \frac{w_{1}}{m} : \frac{w_{2}}{m} : \frac$	WI)
K=1	$ \begin{array}{c} h \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
homes: N, boblik, Ect_iter	n, fect
Vignue). Vignorian recruitor	
Mail Parts Franks	
Viriting Recursion Functions	
The RECURSIVE ZEOP of Faith:	
def beten):	Is fact implemented correctly?
if n==0:	1. verify the base case
return l	2. Trest Bot as functional abstraction
USC:	3. Assume that fact (11-1) & connect
return n * fact (n-1)	4. Verify that bet (n) is correct

The Lunn Algorithm

def luhn_sum_double(n): 211_but_12st, 12st = split(n) luhn_digit = sum_digits

Converting Herstion to Recursion

More formulaic: iteration is special case of recursion. Idea: the state of an iteration can be passed as arguments 9/18/19 - Discussion: Recursion.

- 1. Base Case (Don't always have to do this first)
- 2-Break down the problem into smaller recursive calls
- 3. Use the results of the recursive call to solve problem Recursive Leap of Faith!
 - Double Check that you've hit the base case

al	201	10 1		1. 1		D	
	20	11-1	ichu	rt.	rel	Kecu	SIDN

-regrades due monday Order of Recursive Cally - HW 3 due thus 9/26 (V. important) def cascade(n): · Each cascade is from a PRACTICE RECURSION! if n<10: different cascade call - until return appears, call not print n ely: completed · any statement can happen printn cascade (nllio) before or ofter all print (n)

Announcements

· when harning, always put base case first

12	def inverse cascade (n):	
123	grow (vr)	grow = lawloda n: f_then_g (grow, print, vello)
1234	print (n)	shrink = lamboda n: f_thun_g (print, shrink, ullo)
123	shnuk(n)	
12		
	10 P m (0 N	

$$\frac{def f_then_g(f_tg,n):}{if n:}$$

The Recursion • calls itself more than once in the body • creates a tree shaped process def fib (n): if n == 0: return 0 if n == 1: return 1 else: rohum fib (n-1) + fib (n-2)

Example: Counting Partitions

- It of partitions of + int n, using parts to size m, number of ways n can be expressed as sum of positive int parks up to min inc order
 - count_portitions (6, 4) a negative or zero det count portitions (11,111):
 - · Recurse decomp: finding similar instances
 - · Explox 2 possibilities: · use atteast one 4 · dou't use any 4
 - · Solve two simpler problems: · count_partitions (2,4)
 - · count_pantitions (6,3)
 - · Tree Recursion often involves exploring different choices

- if n==0:
- return 1
- clif NCO:
 - return D
- elif m==0:
 - return D
- 214: with m= count_gartitions (n-mm)
- without in = count partitions (u, m-1) return with m+ without m

9/23/19-Lecture: Containers

Lists	
(41, 48, 47, 49	
odds = [41,43,47,49]	lun odds = 4
odds[0] = YI	odd s [3] - odds [2] = 2
odds[1]=43	odds [odds[3] - odd[2]] = 47
odds [2] = 47	
odds[3]=49	

```
 \begin{array}{c} \text{Working with Limits} \\ \text{digits} = [1, \$, 2, \$] \\ \text{# of elements:} \\ \text{len (digits)} = 4 \\ \text{elements:} \\ \text{elements:} \\ \text{digits[3]} = \$ \quad \text{getitem (digits, 3)} = \$ \\ \text{constituation's repitition} \\ [2,17] * \text{digits} * 2 \\ \text{odd}([2,7], 1, \$, 2\$, 1, \$, 2, \$] \\ [2,7, 1, \$, 2\$, 1, \$, 2, \$] \\ \text{usked lists} \\ \text{paixs} = [[10, 20], [30, 40]] \\ \text{paixs} [1] [0] = 30 \\ \end{array}
```

Containers

For Statements

Count # times that value is in sequence s count (s, value): total, index = 0, 0 while index < lien(s): element = s[index] if element == value:

for < name> in <expressions 7: <suite>

for element in s: element = 1

Range

Vange (-2, 2) -2, -1, 0, 1 * not 2!length: ending value - sharing value element sclention: starting value + indoc List (vange (-2, 2)) List (vange (1)) * implicitly starts (-2, -1, 0, 1) Lo(1, 2, 3) @ D (-2, -1, 0, 1) Lo(1, 2, 3) @ D (-2, -1, 0, 1) Lo(1, 2, 3) @ D

List Comprehension

 odds = [1,3,5,7,9]
 [x for x in odds it 252x==0]

 [x+1 for x in odds]
 [1,5]

 [z, 4, 6, 8, 10]
 [x+1 for x in odds if 252x==0]

Shings

exec ('cump...') - does whatever's in string N - backslash escapes following character len (city) - length of string 'hox' in 'whive's Walda?"- Try For Statement Execution Provider 1. Evaluate header <expression>, which must yield an iterable value (a sequence) 2. For each element in that sequence, in order: A. Bind <name> to that element in the current frame B. Execute the <suite>

Dichonaries	
$Mum = \{ L': 1, V': s, X': 10\}$	
777 { 'X': 10, 'V' 5, 'I': 13 fr	a to shuffle, since they aren't field down
Num ['x'] = 10	
num {to]=	
num.keys()	
did-kuş (['X', 'V', 'I'])	Limits on Dictionanies
hum. ikms ()	· Dictionaries are unordered collections of key-value pairs
>>>> dict_ikuns [Dictionary keys do have two restrictions:
ikms = [('x', ip), ('V', s), ('i', i)]	· A key of a dictionary cannot be a list or a
dict (ikuns) ['x']	dictionary (or any mutable type)
01 777	Two keys cannot be equal: This can be at most one value
'X' in humuals	for a given key
>>7 True	The first restriction is hed to Python's underlying implementation
humuels get (`X', v)	of dictionaries
01777	. If you want to associate multiple values with a key, stoke
Exerx tor x in range (10)}	them all in a sequence value
7かんひいい、1:1、2:4 ろ	
* can't put lists as keys	

9/26/19-Lecture: Data Abstraction

Data Abstraction

- · Compound objects combine objects together
- · A date: a year, a month, and a day
- . An abstract data type lak us manipulate compound objects as units
- . Isolate two parts of any program that uses data:
 - . How data are represented (as parts)
 - . How data are manipulated (as units)
- · Data Abstraction: A methodology by which functions enforce an abstraction barrier between representation and use

Rational Numbers

numerstor	- Exact representation of integers		
denominator	Pair of integers		
	As soon as division occurs, chact rep lost!	NR ny nrany	
vəhional(n,d) - v	etums a vational number ac	dr dy dredy	
Numer (2C) - retu	ums numerator of ac	0	
denom (cc) - ve	hums dunominator of 2c	Not + My = NX*dy + My*dx	
def mi	u_rational (x, y)	dx dy dx * dy	
rehun	1 rational (numerly) * numerly),		
		lef and the second second	

det equal-vational (x,y): return numer(x) * denomby) == numer(y) * denom(x)

def add_vational (x,y): Nx, dx = numer (x), dunom (x) wy, dy = numer (y), denom (y) return vational (nx * dy + wy * dy, dx * dy)

Pairs Lsing Lists Ruprescutting Pairs Using Lists A list literal: conna-superated expressions in bracket $y_{iy} = Pair$ "unpacking" a list X y i X y i X y i X y i

```
      pair [0]
      Element selection using selection operator

      772]
      -

      pair [1]
      -

      >>72
      -

      qutikm (pair 0)
      Element Selection function

      >>71
      -

      qutikm (pair 0)
      Element Selection function

      972
      -

      qutikm (pair 0)
      Element Selection function

      972
      -

      qed (n, d)
      -

      vetum [n119, d119]
      -
```

Abstraction Barner

Pays of program that	trut vational as	Using
use rational numbers to	whole data	add_rational, mul_rational,
perform computation	valuus	vationals_are-equal, print_rational
creak rationals or implement	numerator and	vational, numer,
rational operators	denominator	denom
implement selectors and	pwo-element	list literals and
constructors for rationals	Lists	element selection
	implementation of	f lists
(0) 2 ting Abstraction Bonney	No constructor	we ((12), zhonal (114)
	should	stional (1,2)
2dd_vational ([[1,2],[י, ע])	Atronal China

det divide_vetronst(x,y): [Nbng! vetum [x[0], y[i], x[i] + y[0]] rshimd (numer (x) denomice) denomice) mumerus))

Data Representation

What is Data?

- · We need to guarantee that constructor and selector functions work together to specify the right behavior
- · Benavior condition: If we construct rational number & from numerator n and denominator d, thun numer()/denom (x) must equal n/d
- · Data abstraction uses selectors and constructors to define behavior
- · IF behavior conditions are met, then the representation is valid
 - you can recognize data abstraction by its behavior!

9125/19-Lecture: Trees

Slicing Creates New Values

every time you silve, it creates a copy of the list, not changing the admain value

Processing Container Values

Sequence Aggregation

Several built-in functions take iterable arguments and aggregate them into a value sum (iterable [, start]) - value

Return the sum of an iterable of numbers (NUT strings) plus the value of parameter 'start' (which defaults to 0). When the iterable is empty return start

sum([2,3,4]) = 9 sum([2,3,4],5) = (9+5) = 14

[2,3] + [Y] = [2,3,Y]

max (iterable [, key=func]) - value

Max (ab, c ... [, key=func]) - value

With a single iferable argument, retrum its largest item \$\$250 With two or more arguments, retrum the largest argument

* also min à any

Max (vange (10), key = lambda x: 7- (x-4) * (x-2))

max of those values that are outputs of this function

all (iterspice) - bool Return True if bool (x) is True for all values x in the iterspice If the Iterspice is compty, return True bool (true) bool (thele) True True all ([x < 5 for x in range (57]) True all (range (51)) o 1 2 3 4 False * 0 is false

 Recursive description (wooden trees):
 Relative description (family trees):

 A tree has a root label and a list of branches
 Each location in a tree is called a node.

 Each branch is a tree
 Each node has a label that can be any value.

 A tree with zero branches is called a leaf.
 One node can be the parent/child of another

 * Roople often refer to labels by their locations:
 "cach parent is the sum of its children"

Implementing the Tree Abstraction tree (3, [mell), tree (2, [treel]), A he has a root label tree (1]]]) and a lost of branches [3, [1], [2, [1], [1]]) Each branch is a tree

def tree (label, branches = []): def is_tree (tree): for branch in branches: if type(tree)! = list or lan(tree) <1: ** returns assert is_tree (branch) return False return [label] + list (branches) for branches(tree): if not is_tree (branch): def label (tree): ** returns top value return tree[o] of tree return False

def branchus (tree): *returns hist def is_lesf (tree): *returns True if branch is a return tree [1:] discussing 1st return not branchus (tree) usf

```
True Processing Well Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):

if is_leaf(t):

return1

else:

branch_counts = [count_leaves(b) for b in branches(t)]

return sum (branch_counts)

Discussion Question
```

```
implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

sum ([ [1, 2, 3], [4]], []) def leaves (tree):

[1, 2, 3, 4] if is leaf (tree):
```

Clar :

```
rehum [Isbel(tree)]
```

```
return sum (List of leaves for each branch, []))
```

```
Creating Trees
```

```
A function that creates a tree from another the is hypically also recursive 
det increment_leaves (t):
```

```
if is_uaf(t):
```

```
vehum her (12bel(+)+1)
```

else:

bs=[increment_leaves(b) for b in branches(t)] return her (lahel(t), bs)

def increment (H:

return the (label (H) +1, Einchonent (b) for b in branches (H])

9130119 - Lechure: Mutable Values

Objects	month	
today. strf time (2)	Bed! Any (H)	
Monday, September	30 day of week	
hoday. year		Denero
2019		
today		
dstetime.dste(2019,	9,30)	

- · objects rep info
- · consist of data ; behavior, bundled to create abstraction
- · can up things, also properties, interactions, processes
- · hype of object : class, classes are first class in Python
- · Object Oricuted Programming
 - · multiphor for organizing large programs
 - · special syntax to improve code
- · In Python, every value is object
 - · all objects have attributes
 - · data manipulation happens through object methods
 - · functions do one thing, objects do many related things

Fxamples: Smings

Hello'. < some hunchion > () ASUI code chart! string <-> integers

Visk bab bods off 129 129142 1294 1254

Suits = ['coin', 'string', 'myriad'] onginal = suits suits. pop() 'myriad' suits. remore ('string') Suits. append ('cup') Suits. extend (['sword', 'club']) Ye object was being changed, therefore both vars will show the same Suits ['coin', 'cup', 'sword', 'club'] suits ['coin', 'cup', 'spade', 'club'] suits E'heart', 'diamond', 'spade', Elubr'] originat

```
Some Objects Can Change
11 Object changing state
Same Object can change through functions
# only dictionaries and lists can be mutated
all
```

```
Numerals pop('V')

5 * dictionary pop: pops off

Numerals key entered

{'I':1, 'X':10}
```

```
Mulphon con Hoppen Within Function Coll

A function con change the value of any object in its scope

four = [1,2,3,4]

len (four) def mysking(s) def mysking()

y spop() s[2:]=[]
```

```
Nuysteny (four)

lm (four)

2
```

```
Inpus
```

```
[2,3,4,5] (2,3,4,5) 2,3,45 ()
list tuple tuple compty tuple
```

```
* can switch between
t = (2, 3, 4, 5)
                           tuple ()
                                        (2,)
+[0]=2
                                         LoI element tought
                              ()
                                                                            list & huple
                                  * multiplying makes

* new chy of hype,

not changing original list

(3.4) *2 t= (2.2)
  +[:3] = (2,3,4)
                                                                  * cannot change contents
hiple ([2]) (3,4) + (5,6)
                                                                       of a tuple
                                                +[2]=7
                   (3,4,5,6)
                                  (3,4,3,4)
```

```
hugus can be keys in duct
```

Tuples are Immutable Sequences

- Immutable values are protected from mutation

- Value of expression can change be changes in names or objects

$$S = (\lfloor 1, 2 \rfloor, 3)$$

 $S = (\lfloor 1, 2 \rfloor, 3)$
 $S = (\lfloor 1, 2 \rfloor, 3)$
 $S = (\lfloor 1, 2 \rfloor, 3)$

Sameness and Change

- · as long as we never modify objects, a compound object is just the totality of its pieces
- · a vational number is just its numerator and denominator
- " this view is no longer valid in the prexime of change
- · a compound data doject has an "identity" in addition to the pieces of which it is composed
- · a list is still "the same" list even if we changed its contents
- · Conversely, we could have two lists that happen to have the same contents, but are different

I dentity Operators

- 1 dentity
- <expo> is <exp17
- evaluates to True if both evaluate to same object
- Equality
- (expor == (exp1)

```
evaluates to True if both <expo> and <exp2> evaluate to equal values
Identical Objects are always equal values
```

10/02/19-Lecture: Multiple Functions

w ananax values of variable in the parent frame in a smaller function who now local variables

* local & nonlocal lookup of balance produces error!

- * dosn't do that to list since list is mutable
- · mutable function variable in function always changing
- · john and skeen not equal, since calls different
- functions w/ different funds
- · even if some john and skeven amount, still not equal

referentially hansparent = mutable Functions Making it 10 + 6(4) different b(3) + 6(4) since x isn't changed

A Function With Behavior that Varies over Time

Reminder: Local Assignment def percent_difference (x,y): difference = abs(x-y) - Assignment binds name(s) to value(s) in the return 100 * difference/x first frame of current environment dift= percent_difference (Y0, 50)

Execution Rule for Assignment State ments:

1. Evaluate all expressions right of =, from left to right

2. Bind the names on the left to the resulting values in the current frame

Effect: Future assignments to that name change its pre-existing binding in the firstnon local frame of the current environment in which that name is bound

· non-local variable must be referenced to before function

· cannot have some variable in existing frame

The Money Meanings of	Assignment Statements
status	Effect
· no nonlocal statement	· creste new binding from nome "x" to 2 in first
"X" not locally bound	frame of current environment
· no nonlocal statement	· rebound "x" to 2 in first frame of
"x" is bounded locally	current environment
· nonlocal x	· relained x to 2 in first non-local frame of the current
"x" is bound in non-	environment in which it was bound
local frame	
· nonlocal ac	· SynboxError: no binding for nonlocal 'x' found
x is not bound in a	•
non-local frame	
· noulocal x	· Syntax Emor: Name 'x' is parameter and nonlocal
X is bound in nonlocal frame	
X also bound locally-	

Python Particulars Python pre-computes which frame contains each name before executing the body of a function Within the body of a function, all instances of a name must refer to the same frame. def make_withdraw(falance). def make_withdraw(falance). f a mount > balance:

return 'Insufficient funds balance = balance - amount return balance return withdraw

wd = make_withdraw(20) wd(5)

Mutable Values - mutable values can be changed without nonlocal statement

Multiple Mubble Functions

Referential Transparency Lost

· Expressions are referentially transparent if substituting an expression with its value does not change the meaning of a programe mul (add (2, mul (4,6)), add (3,5))

· Mutition operations violate the condition of referential transparency because they do more than just return a value; they, changed the environment

		Making						:) +613	લ)	
Global frame		Š	since	x isi	n't c	trange	đ			
f func g(y) [parent=f1]										
b func h(z) [parent=f2]	1	def f	•(x)	:						
f1: f [parent=Global]	2	×	(=	4						
× 6	3	d	lef	g(y):					
g d	4			def		(z):				
Return value	5					onlo	cal	×		
f2: g [parent=f1]	→ 6					= x				
y 2										-
h d	- /					eturr	1 X	+	у +	Z
Return value	8			ret		n n				
	9	r	etu	ırn	g					
f3: h [parent=f2]	10	a = f	(1))						
z <u>3</u> Return 10	11	b = a	a(2))						
value 10	12	total) +	- b(4	4)			
f4: h [parent=f2]										
z 4										
Return value 12										

referencially hansparent = mutable functions

10/03/19: Labs-Data Abstraction Trees

Data Abstraction

- · allows you to treat any code as an object
- · constructor: Functions that build the abstract data type
- selectors: functions that retrieve information from the data type

Trees

- · tree-date structure that represents hierardy of information
- · Constructor: tree (label, branches = []):
- · Schectors: label (tree) retring value in root node of the
 - branch (true) return list of branches in given tree
 - is_leaf (tree) > returns The if tree's list of branches is empty, and

Folse otherwise

itecators lecture

10 05/19: Lecture: Herators

elterators

- A container can provide an iterator that provides access to its elements in some order iter (iterable): return an iterator over the elements of an iteratole value hext literators: return the next element in an iterator
 - 5= [3,4,5]
 - t = ikr(s) u = ikr(s)
 - * iter creates the iterator, must calls the mest value to iterate on
 - * new iterstors over some value doesn't must with old one
 - $s = [C_{1}, 2], 3, 4, 5]$ t = ikv(s) $mxt(k) \rightarrow [1, 2]$ $mxt(k) \rightarrow 3$ $list(k) \rightarrow [4, 5] * displays what's left$ $mxt(k) \rightarrow shop kention * enor showing end of iteration$

Dictionary

- Views of a Dictionary
- " An iterable value is anything that can be passed to iter to produce an iterator
- . An ikostor is returned From iter and can be passed to next; all iterators are mutable
- · A dictionary its keys, its values, and its items are all iterable values
 - . The order of items in a dictionary is the order in which they were added
 - · Historically, items appeared in an arbitrary order
 - d = {'one':1, 'two':2, 'three" 3'
 - d['zevo']=0

K= iter (d. kuys ()) (or iter (d))	v=iler(d. values())	i=ikr(d.items())
Next (K) - 'one'	wext(v)-1	Mext(i) - ('one', 1)
Mext(K) - 'two'	Wuxt(v)→2	Next(i) - ('two', 2)
Wext (K) - 'three'	Muxt(v) - 3	Maxt(i) - ('Hme', 3)
Next(x) - 'zevo'	WLXT(V) - D	next(i) - ('zero', 0)
(d. keys ()) - just key	(d-values ()) - just valu	e (d.ikms()) - bupple of both

For Statements

Y = Y	ange (3,5)	vi=ikr(v)	
	(Y) - + (Y)	next(vi) - 3	for loop can work
	1,57	for i in n	w iterstole hunchion,
		print(i) 415	immudiately goes through
			all then be end

Built-in Functions for Ukration

Many bui	t-in Python sequence operations that return iterators that compute results lagily	
Mob (hunc, ikesble) - Iterske over func (20) for x in itersble	
Filler	func, iterstole): Iterste over x in iterstole it func (x)	
zip (inst_iter, second_iter): Iterste over co-induxed (x, y) pairs	
veress	A (sequence): [tersk over x in a sequence in reverse order	
To view t	a contents of an iterator, place the resulting elements into a container	
	iterstole): create a list containing all ac in iterstole	
huple l	torable): create a tuple containing all x in iteratole	
	(ikvable): creak a sorted list containing se in ikvable	
	bcd = ['b', 'c', 'd']	
	[x.upper() for ze in bed] - [B', 'C', D]	
	m= map (lambda se: x upper (), bcd) * if just map (blach, blach) then it	
	Next(m) - 'B' would just return a function	
	with (m) - ici	
	Next (m) - (D'	
	nuxt (m) - Stop Herstion	
	m=map (double, range (3,7)) next (r) - 10 list (hiller (f, map loude, range (3,	2001
	f= lambda y: y = 10 3=>6** [[10,12]	-715
	$t = filkr(f,m) \qquad \qquad$	
	5-7104*	