

Fall 2019
HW 2-3 Pimental I Lec
In $9: 30-11$ soda 227
Th W-L2:30 Benows iss

8128119 lecture
What is CS?
A couve of managing abstraction
mastering abstraction
programming paradigms
A intro to programming
full understanding of Python fundamentals
how computers interpret programming
Different types of languages: Scheme: SQL

Expressions: describes a computation and evaluates a value
$\dot{f}(x) \rightarrow$ most overall $\max (3,4.5)$ pow $(2,100)$

Anatomy of Call Expression

$$
\text { add) }(2,3)
$$

operator operand operand

$$
\operatorname{mul}(4,6)
$$

mull 46
look @ announcement

- Pans of Course:
watch video before lechesel. lab is most important! discussion most important!
office has most important!
read textbook before cess!
look @ important dates!
csbla.org

Course Policy:
discuss everything! completed with partner partner from discussion! -build good habits now!
$\operatorname{mul}(28,8) \rightarrow 224$

8/30l19-Lecture: Names
Names, Assignment, User-Defined Functions
$>77 \rightarrow$ python prompt
$\max (2,3)=3$
pow $(2,3)=8$
import names:
$\geqslant 27$ from math import pi
272 from math import \sin
assignment:
\ggg radius $=10$

- once number is bound to value, will continue staying bound
277 area, cire $=p i *$ radius $*$ radius, $2 *$ pi* radius
$\max (2,3) \rightarrow$ pall function
$f=\max \rightarrow f(2,3)=32150$
\longrightarrow set f to \max function
if place $\max =7$, then \max becomes int, not function anymore
* need to exit \rightarrow exit() ; control D
def squall (x) :
square (3)
* from math import add.
\cdots rehum $\operatorname{mul}(x, x)$
def sum_ square (x, y) :
$\cdots \operatorname{retum} \operatorname{sum}(\operatorname{squax}(x)$, squax $(y))$
* can make area a function to show updated number every time, remembers expression def $\operatorname{ara}()$:
... rectum pi* radius* radius
\rightarrow but would need to define radius before or it errors

$$
\begin{aligned}
& f=\max \quad g=\min \quad h=\max \quad \text { max }=\min \\
& \max (f(2, g(h(1,5), 3)), 4) \\
& \max (f(2, g(5,3), 3)), 4) \\
& \max (f(2,3,3), 4) \\
& \max (3,4) \rightarrow 3
\end{aligned}
$$

Environment Diagrams
visualize interpreter's process
Assignment Statements:
$1 \quad 2=1$
2. $b=2$
$3 \quad b, a=a+b, b$

$$
\text { pilz.141s } \quad f=\min ()
$$

global frames
aL
$-b$
$a<2$
bl 3

Execution mule for assignment statements:

1. evaluate all expressions to the right of $=$ from left to right
2. bind all names to the lett of $=$ to the resulting values in the current frame

Defining Functions
Assignment is a simple means of abstraction: binds name to value
Function definition is a more powerful means of abstraction: binds name to expression def <name> (<formal parameters>): - signature: \#of arguments taken rectum < retum expression> velum body: computational process expressed by
Execution procedure for def statements: a function
Procedux for calling/ applying user defined functions

1. creates a function with signature <name> (<formal parameters>)
2. Set the body of that function to be everything indented after the first line
3. bind <name> to that function in the current-frame

Calling User-Defined Functions
Procedure for callinglapplying used defined functions

1. Add a local frame, forming a local environment
2. Bind the functivis formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment.

$$
\begin{aligned}
& \begin{array}{l}
1 \\
2 \\
2
\end{array} \text { from operator import mut } \begin{array}{l}
\text { square }(x): \\
\text { return mut }(x, x) \\
\text { square (}-2)
\end{array} \\
& \hline
\end{aligned}
$$

* function's sig has all info needed to create a local frame

Looking Up Names in Environment
Every expression is evaluated in the context of an environment.
So for, the current environment is either:
the global fame alone, or
a local frame, followed by the global frame

* Important!

An environment is a sequence of frames
A name evaluates to the value bound to that name in the earthiest frame of the current environment in which that name is found.

- first looks for name in that local fame
if not found, wk for it in global fame

911/16 Lecture - Control
Print vs. None

- python has miles to automatically print what evaluated
"None" represents none in python
function will rethum'non' if nothing explicitly returned
None not displayed as value of expression
def does not square (x) :

$$
\begin{aligned}
& \ldots x * x \quad \text { no rehum } \\
& 7>7 \text { does; not _ squad (4) }
\end{aligned}
$$

cant display none as expression value

$$
\begin{gathered}
277 \text { sixteen }=\text { does not } \text { square (u) } \\
\text { sixteen = NONE }
\end{gathered}
$$

Pure Functions: Non-Pure Functions
Pure Functions
just rectum value $\underset{\rightarrow \rightarrow}{\rightarrow \rightarrow}$ abs \rightarrow velum value

Non - Pure Functions

A side effect isvit a value; just something that happens as a consequence of calling a function

$$
\rightarrow \operatorname{print}((\text { doeshit have a tum), (docsn't have + velum)) }
$$

(
2
Nome None

Lite Cade of a User -Defined Function

Formal parameter

what happens?
A new function is created!
Name bound to that function in the current frame
opestor: operands evaluated
Function (value of operator) called on arguments (values of operands)

A new frame is created! Parameters bound to arguments Body is executed in that new environment

Conditional Statements
A statement is executed by the interpreter to perform an action. compound Statement:

Statement
Statement
Clause
<header>: <statement> <statement>
<separating header>: <statement> <statement> ...

The fins header determines a statement's type.
The header of a clause "controls" the suite that follows.
def statements are compound statements
To "execute" a suite means to execute its sequence of statements, in order

Execution Rule for a sequence of statements

- execute the fist statement
- unless directed otherwise, execute the rest
ex. def absolute -value (x) :

$$
\text { enif } x==0
$$

retum 0
else:
rectum x

Execution noe for
-i ex.py
conditional statements

$$
2 \text { boolean contexts }
$$

C to open a python wordedit
Each clause is considered in order

1. Evaluate the headers expression
2. If it is a true value, execute the suite', skip the remaining clauses
3.011 "else" clauses, always in end

Iteration
while:
Execution Rule for while:

1. evaluate the headers expression

1 i, total $=0,0$
2. if it is a true value, execute the
$i=i+1$
total $=$ total $+i$

Lab 1 Crshcouse Notes
Division
True Division:1
Floor Division: Il
Modulo: 9
(decimal division)
(integer division) (reminder)
$>1 / 5$

$$
>1115
$$

$$
>\backslash q 5
$$

0.2
0

72514

$$
>2524
$$

6.25

6
1
$74 / 2$
2.0
>510
Zero DivisionEmor
>4112

$$
\geqslant 4 \varepsilon 2
$$

0
7590

* useful technique involving q operator: check if \# divisible

$$
x q y==0 \quad x q 2==0
$$

x divisible by $y \quad x$ divisble by 2
Functions
can make function to abstract a line of stuff
$\operatorname{def} f 00(x)$:

$$
7 \text { foo (1) }
$$

$$
\text { velum } x * 3+2
$$

$$
5
$$

2 applying function is clone with call expression
Caller Expressions

$$
\operatorname{add}(2,3)
$$

opertor $V_{\text {operand }}$
Evaluate a function:

1. Evaluate the opestor, and then the operands (from left to right)
2. Apply the opentor to operands (the values of operands)

* if nested expression, apply to inner operand then outer operand

Retum vs. Print

- if executes retum statement, then function terminates immediately
- if reaches end of function body wlout retum \rightarrow retums None print just prints in Terminal, wlout terminating
* print displays text without quotes, retum will preserve quotes

Control
Boolean Opentors

- and evaluates to true only if both operands evaluate to the
\rightarrow atleast one is false then evaluates to false
- or evaluates to True if atleast one operand is true
L all are false then evaluates to fake
not evaluate to the if operand evaluates to false
L. evaluates to false if operand evaluates to true
cv. True and not False or not the and False

The 4, Tiu or False and False
True or False
Order of Opentions for Boolean
not \rightarrow highest privity
and
or \rightarrow lowest phority
Shod circuiting.

operator:	Checks if:	Evaluates lett to right:	Example
and	all values true	first false value	false; $1 / 0 \rightarrow$ false
or	attest om the	first true value	true or $\% \rightarrow$ true

* if and! or don't shoot-cirnit, then they retum last value

If -Statements:
if $x>3$:
return True
els:
rehem Ez les
While Loops:
while (blah):
do blah

9/4/19-Lecture: High-Order Function
Ifention Example
The Fibonacci Sequence

$$
0,1,1,2,3,5,8
$$

index: $0^{m} 1^{m} L^{m} 3^{m} 4^{m} 5^{m} 6^{m}$
def $\operatorname{fib}(n)$:
pred, carr =1,0 pred, cur $=0,1$ \#t $\sigma^{\text {th }}$ and $l^{s^{+}}$fib Hs 2
$k=0 \quad k=1 \quad$ \# ur is k^{m} fib \&
while $k<n$:

$$
\begin{aligned}
& \text { pred, cur = cur, pred + our } \\
& k=k+1
\end{aligned}
$$

retum cur

Announcements
-WW 1 due thus 9/5
Hog due thurs $9 / 11$ checkpoint due 9/9
additional topics lecture:
914 5-6 wed 3106 Etch
fib pred L
curL
nL
$k L$

* for assignment statement, right always done before left

Environment Diagram

Designing Functions
A function's domain is the set of all inputs it might possibly take as arguments
A function's range is the set of output values it might possibly retum
A pure function's behavior is the relationship it creates between input and output
Def square (x) Def fib (n)
D: x is real number
$D: x$ is real number
R : non-weg real number
R : venues fib number
RV: squat of input $R V$: $n^{\text {th }}$ fib number

A Guide to Design Function
Give each function exactly one job
Doit repeat yourself (DRY). Implement a prouss just once, but execute many times
Define functions generally

Higher-Order Functions
Generalize Patterns with Arguments
Regular geometric shapes relate length and axe
shapes: \square 0

Ares: $1 \cdot r^{2} \pi \cdot r^{2} \quad \frac{3 \sqrt{3}}{2} \cdot r^{2}$
Finding common shuctue allows for shared implementation
def ared-squak (r) :
relume $r * r$
def aka-circle (r)
rectum $r \neq r * p i$
Set ara -hexagon (r)
Y repeating ourselves w/ the asset statement ; rectum rat
park!
rectum $* * v * 3 *$ sgt (3)/2
assert $2>3$, 'Math is Broken'
\rightarrow allows to test for certain conditions that arevi't allowed
def $2 x_{a}(r, \operatorname{shape}$ constant)
assert $r>0$, 'A length must be positive'
rectum r*r* shape constant
def aka square (r)
rectum area $(r, 1)$
def area circle (r)
rectum ara (r, pi)
def aka, hexagon (r)
rectum area $(r, 3 * \operatorname{sgrt}(3) / 2)$

Generalizing Over Computational Process
The common structure among functions may be a computational proves, anther than a number

$$
\begin{aligned}
& \sum_{k=1}^{5} k=1+2+3+4+5=15 \\
& \sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=225 \\
& \sum_{k=1}^{5} \frac{8}{(4 k-3)(4 k-1)}=\frac{8}{3}+\frac{8}{3 s}+\frac{8}{99}+\frac{8}{195}+\frac{8}{323}=3.04
\end{aligned}
$$

def sum naturals (n) :
""" Sums first in natal numbers
≥ 77 sum_natuals(s)
is
«いい

$$
\text { tola, } k=0,1
$$

$$
\text { while } k<=n
$$

$$
\text { toll }=\text { total }+k
$$

$$
k=k+1
$$

retum total
def pi-term(k):
rectum $8 \mid \operatorname{mul}(4 * k-3,4 * k-1)$
def sum cubes (n) :

$$
\text { total, } k=0,1
$$

while $k<=n$:

$$
\text { torn, } k=\operatorname{pow}(k, 3), k+1
$$

velum toll
def identify (k) :
velum k
def cube (K):
retum pow $(K, 3)$
def summation (n_{1} fern) :

$$
\text { toll, } K=0,1
$$

while $K C=n$:

$$
\text { total, } k=\operatorname{total}+\operatorname{tem}(k), k+1
$$

retam total
def sum_naturals(n):
refum summation (n, identity)
def sum_cubes (n):
rectum summation (n, cube)

Functions are first class: Functions can be manipulated as
values in our programming language
Higher-order Functions: A function that takes a function as an argument value or rehums a function as a retum value Higher-order functions:

Express geneal methods of computation
Remove repitition from programs
Separate concems among functions

Lama Expressions

$$
\begin{aligned}
& \text { square }=12 m b d a x: x * x \\
& \text { square }(y)=16 \\
& \text { squat }(10)=100 \\
& (12 m b d a \quad x: x+x, 10)
\end{aligned} \quad \begin{aligned}
& \text { A function } \\
& \text { with formal parmeter } x \\
& \text { that rectums value of } " x+x^{4}
\end{aligned}
$$

Lambada cannot use def statements

Lambda vs. Def Statements

$$
\text { square }=\text { lambda } x: x: x
$$

def squat (x) :

$$
\text { rectum } x \neq x
$$

- Both create a function with the same domain, range, and behavior
- Both functions have as their parent the function in which they wen defined

Both bind that function to the name square

- Only the def statement gives the function an intrinsic name
* makes weird environment diagrams

Gif

$$
\text { squat } \because \text { func }(\lambda)(x) \quad p=0
$$

GA
flo: $\lambda \quad(p=9)$
1
$\times \mathrm{L}$
WLi6
use lambda, not actual name

$$
\begin{aligned}
& \text { square } L: \text { func squares } \quad \begin{array}{r}
p=g \\
\text { squad }(p=g) \\
x \mid y \\
W L_{6}
\end{array}
\end{aligned}
$$

Control Structure Practice Problems
Problem 1:

Probum 2:
$\operatorname{temp} 2=0$
while n :

$$
k=n q 10
$$

$$
\text { if }(\operatorname{temp} 1>k):
$$

$$
n=n \| 10
$$

$$
\operatorname{semp} 1=k
$$

velum The

$$
\begin{aligned}
& 2=\text { even; odd; (3) } \\
& b=\text { one; three; (5) } \\
& c=\text { two ; four ; (8) } \\
& d=\text { odd; (4) } \\
& \text { even; odd; (3) } \\
& e=\text { two; four; } 8 \\
& \text { one; four; (13) } \\
& \text { - Pig out } \rightarrow \text { any ax } 1 \rightarrow \text { score for ham is } 1 \\
& \text { - Fro Bacon } \rightarrow \text { if choose } 0 \text { molls, then you do } 10- \\
& \text { min between kt's! on's digit } \\
& \text { - Feel hogs } \rightarrow \text { if dice you roll is exactly } 2 \text { away } \\
& \text { from last one, get } 3 \text { extra points (absolute diff) } \\
& \text { Swine Swap } \rightarrow \text { if left ingot most digs } \\
& \text { swapped }=\text { opponent's left }: \text { right } \longrightarrow \\
& \text { cons ate swapped }
\end{aligned}
$$

915/19 Discussion woks
Expressions vs. Value (Qus.A)
Everything has T;E value
True: True, 1, 10,-10, "hello"
False: False, 0, ", None, print ("hello")
And: evaluates left to right, retum first False, return last
True
or: rectum first True, or rectum last false evaluated
wawn-up
(Time or "10) and 'hello' and (-9 and 5 5)
(1) True
(2) "hello"
(3) 0

True and "hello" and 0
\square vetums 0 , not False!

Print vs. Rehem Statement
$\operatorname{def} f(): \quad$: call function \rightarrow need $f()$
rectum "hello" if just f_{1} will show where function is
def gl)
print ("hello")
$x=f() \rightarrow$ retums nothing $\quad x \rightarrow$ "print"
$y=g() \rightarrow$ prints hello $\quad y \rightarrow$ shows nothing
Control

- repeat chunks of code
infinite bop \rightarrow wont ever tell you if errored
Environment Diagrams
- always start with the global frame
- if function never included retum, you con't need to add them either
- operand should always be a value
- parent of function is where its defined, hot called
- don't leave any brackets blank
- don't open new frame for built-in functions

9/6/19-Lechus: Environments

Higher-order function: a function that takes a function as an argument value or retums a function as
a retum value

$$
\text { return } f(f(x))
$$

def squat (x) :
global

$f^{2} g(y) \quad p=q$

Every user-defined function has a parent frame (often global)

- the parent of a function is the frame in which it was defined
- even local frame has a parent frame (often global)
- the parent of a frame is the parent of the function called

How to Dew an Environment Diagram
when function is defined?
create a function value: funk <name> (<formal paramests) [parut=<parent?] Its parent is the current frame.
Bind cname> to the function value in the current frame
when a function is called:

1. Add a local frame, titled with the <name> of the function being called
2. Copy the paint of the function to the local fame: [parent: <label>]
3. Bind the <formal parameters > to the arguments in the local frame
4. Execute the body of the function in the environment that starts with the local frame

An environment is a sequence of frames

- The environment created by calling a top-level function (no def within def) consists of one loed frame, followed by the global frame
global
square $(x) L$ func square $(x) p=g$
triple $(x) \longrightarrow$ func triple $(x) p=9$
compose $(f, g) \longrightarrow$ func composil（ $F, \underline{q})$ Pog
squau（s） 125
triple（5）Lis
squiple
$f 1:$ squar（x）$\quad p=g \quad f 2: \operatorname{tiple}(x) p=g \quad f 3:$ compos $I(f, g) p=g$
$x<5$
rul2
x Ls
f Lsqure
9 Linpu
$h L \longrightarrow f a n c h(x) p=f 3$
$f y: h(x) \quad p=\{3$
rvL
$\times 15$
f fi：squak $(x) p=g$
f6：Triple $(x) p=g$
$\times 15$
vvL
rvL
Lamda Expressions
squar $=1$ amds $(x):(x+x)$ allows you to enduze expressions －achald evaluation part
A function with fomal paremeter x that rectums the value of＂$x * x$＂ no＂rotum＂keyword

Euviroument Dizgran
（Llobzl）Fame
squax $L \longrightarrow$ func $\lambda(x)(p=g)$
$f 1: \lambda(q=g)$
docsn＇t get a visme，just a sigh

$$
\begin{gathered}
4 \\
0
\end{gathered}+\begin{aligned}
& 4 \\
& \frac{1}{13}
\end{aligned} \quad 4+2+6=12
$$

$9 / 9 / 19$ lecture- Itertion
Retem Statemants:

- complete evaluation of call expression and provides value $f(x)$: switch to new envio, execule f's body
retum statement: switch back to previous enviro
only 1 retum ever executed
def end (n, d) :
while $n>0$:

$$
\text { last, } n=n 210, n / 110
$$

print (last)

$$
\text { if } d==\text { last: }
$$

vetum Nove
det print_all(x):
print (k)
retum print_all

- affer numing, tells it to priut (1)(3)(5) priut again it 2 priut-all $[8=9]$ KL
def prilt_sums (k):
priut (K)
def wext_sum (n)
retum print_sums ($n+i c$)
retum wext sum
print sum (1)
1 next.sum (3)
print_sums $(1+3=4)$
$4 \quad \operatorname{moxtsum}(5) \quad$ print sums $(y+5=9)$
16

Announuments

- midterm 1 on Mouday
- Project Parry today
- no recussion on midtern
- not much new content, mostey examples

9/11/19 Lecture: Resign
Functional Absindion
def squads (x):
def sum squares (x, y) :
rectum maul (x, x)
rectum squab $x(x)+$ square (y)

What does square need to know about square?

Choosing Names

- Names doit matter for correctness but matter for composition
- should convey meaning or purpose
- type of value bound best documented in function's docstring
- typically convey their effect, their behavior, value retumed

Which Values Deserve a Name

- Repeated compound statements
- Meaning ful pasts of complex expressions:

More Naming Tips

- Names can be long if they help document your code
- Names can be shoot if they represent generic quantities
$9 / 12 / 19$ Discussion Notes
Reminders
go slowly
Lookup Rule

1. Look for var in current frame

- don't copy objects on right side
assign parents
label frames correctly
it most likely will not enor if you have fire, check work
9)13|19 Lectux-Midtern Examples

Function cunning take multi argument into HOF, passing one @ a time

$$
\text { def make_adder }(n) \text { : }
$$

retum lambda $k: n+k$
def cunt(k):
$\operatorname{def} f(x)$:

Decorator Function

allows you to follow How

WW PD?

- Print retums none, displays its arguments first
-

delayed | delay |
| :--- |
| delayed |
| 6 |\quad None

Global Frame
house L fume horse (mask) $p=g$
mask $L \longrightarrow \lambda($ mors $) p=g$
fl: horse (mask) $p=g$

$r v L 2$ always look to lest for names!

9/18/19 - Lector: Recursion

Recursive: A function is called recusive if the body of that function calls itself, either directly or indirectly
Implication: Executing the body of 2 recursive function may require applying that function
Digit Sums

$$
2+0+1+9=12
$$

- If a number is divisible by 9 , then sum_digits(a) is also divisble by 9
- last \# of cred card is sum of cred \# digits

Sum Dig wont while:
def split (n) :
velum u\| 10, aq 10
def sum_ digits (n) :
if $n<10$:
retain n
else:

$$
\begin{aligned}
& \text { all_ but_ last, last }=\operatorname{split}(n) \\
& \text { retum sum } \text { digits }(a U-\text { but }- \text { last })+\text { last }
\end{aligned}
$$

Anatomy of Recursive Function

- def statement header similar to other functions
- conditional statements cluck for base case
def $\operatorname{split}(n)$:
retuse in $\|(10,4$ a 10
def sum_digiss (n) :
if $n<10$:
rectum n
else:
all__but_last, last = splitcn)
velum sum_ digits (all_ but_ last) + last

Environment Diagrams and Recursive
def $f a c t(n)$:
if $n=20$:
retum 1
else:
rectum $n *$ (act $(n-1)$
$\mathrm{fact}(3)$

fact is called multiple times
different frame opened for same function

Irention vs. Recursion

$$
41
$$

def fact_ifer (n)

$$
\text { ford, } k=1,1
$$

while $k \leq n$:

$$
\text { ford, } k=\text { ford }+k_{1} k+1
$$

rectum to rel
moth: $n!=\prod_{k=1}^{n} k$
hames: n, ford, k, fect-iter
def $\operatorname{fact}(n)$:
if $n==0$:
rectum 1
else:
refum $n * \operatorname{act}(n-1)$
$n! \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { othencuse }\end{cases}$
n, feck

Verifying Recursion Functions
The Recursive Leap of Faith:
def fact (n) :
Is fact implemented correctly?
if $n==0$.

1. verity the base case
veruml
2. Treat fact as functional abstraction
else:
3. Assume that fact $(n-1)$ is correct
rectum $n * f_{\text {act }}(n-1)$
4. verify that $f \mathrm{fct}(n)$ is correct

The Luhn Algorithm
def luhn_sum_double (n):
all _but, last, last = splithu)
lunn_-digit $=$ sum_digit's

Converting Iteration to Recursion
More formubic: itention is special case of recession
ides: the sate of an iteration can be passed as arguments

9118119-Discussion: Recursion

1. Base Case (Don't always have to do this first)
2. Break down the problem into smaller recursive calls
3. Use the results of the recursive call to solve problem Recursive Lex of Faith!
Double Check that you've hit the base cause

9/20/19-Lecture: Tree Recursion
Order of Recursive Calls
def cascade (n):
if $n<10$:
print n
els:
print h
cascade (olio)
print (n) completed before or after all

Announcements

- regrades due monday
- HL 3 due thus $9 / 26$ (v. important)

Practice recursion! different cascade call
-until retum appears, call not

- any statement can happen
- when leaning, always put base case first

1
12 def inverse cascade (n) :
$123 \quad$ grow (n)
grow = lambda $n: f_{-}$then $-g$ (grow, print, ullio)
1234
print (n)
shrink $=$ baba $n: f_{-}$then $-g$ (print, shit, nil10)
123
shrink (n)
12
1
def f _the n_g (f, g, n) :
if u :
$f(n)$
$g(n)$
Thee Recursion
calls itself more than once in the body creates a tree shaped process
def fib (n) :
if $n==0$:
return 0
if $n=21$:
retum 1
else:
rectum fib $(n-1)+$ fib $(n-2)$

Example: Counting Partitions
\# of partitions of + int n, using pass to size m, number of ways n can be expressed as sum of positive int parts up to m in inc order

$$
\text { count _ partitions }(6,4)
$$

- Recursive decomp: finding similar instances
- Explore 2 possibilities.
- use atleast one 4
- dort use any 4
solve two simpler problems:
- count-partitions (2,4)
- count-patitions $(6,3)$
- Tree Recursion often involves exploring different choices
* negative or zen deft count -partitions (n, m):
if $n==0$:
rectum 1
clit प<0:
velum 0
elis $m=0$:
rectum 0
els:
with _m = connt_partitions (n-m,m)
without $-m=$ count - partitions $(n, m-1)$
refum with_me withoutem

9/23/19-Lectux: Containers
Lists

$$
\begin{array}{ll}
{[41,43,47,49]} & \\
\operatorname{oddd}=[41,43,47,49] & \operatorname{lom}[\operatorname{odds}]=4 \\
\operatorname{odds}[0]=41 & \operatorname{odds}[3]-\operatorname{adds}[2]=2 \\
\operatorname{odds}[1]=43 & \text { odds }[\operatorname{adds}[3]-\operatorname{odd}[[2]]=47 \\
\operatorname{odds}[2]=47 & \\
\operatorname{odds}[3]=49 &
\end{array}
$$

Wonking with Limits

$$
\text { digik }=[1,8,2,8]
$$

\# of cements:

$$
\operatorname{len}(\text { digik })=4
$$

element selexd by is index

$$
\text { digis }[3]=8 \quad \text { getitem }(\text { digits, } 3)=8
$$

concatination? repitition

$$
\begin{array}{ll}
{[2,7]+\text { digits } * 2} \\
{[2,7,1,8,28,1,8,2,8]}
\end{array} \quad\left[\begin{array}{l}
\operatorname{add}([2,7], \text { mul (digilk, 2)) } \\
2,7,1,8,28,1,8,2,8]
\end{array}\right.
$$

wested lists

$$
\begin{aligned}
& \operatorname{pains}=[[10,20],[30,40]] \\
& \text { paik }[i]=[70,40] \\
& \operatorname{paiks}[7][0]=30
\end{aligned}
$$

Conhiness

$$
\text { digits }=[1,8,2,8]
$$

1 in digits $[1,8]$ indigits

$$
\text { T'ine } \quad\left[\begin{array}{c}
\text { False } \\
\text { Tigits }
\end{array}[1,[1,8], 2]=\text { digits } \quad[1,8]\right. \text { in digits }
$$

False

For Statements
Count +t times that value is in sequences

$$
\begin{aligned}
& \text { count }(s, \text { value): } \\
& \text { total, index }=0,0 \\
& \text { while index }<\text { len cs : : } \\
& \text { element }=\text { s [index] } \\
& \text { if element = value: }
\end{aligned}
$$

for <name> in <expressions>:
<suite>
for element in s :
element $=1$

Range
range $(-2,2)$

$$
-2,-1,0,1 * \text { not } 2!
$$

length: ending value -starting value element selection: staring value +indore

Comprehension

$$
\begin{aligned}
& \text { odds }=[1,3,5,2,9] \\
& {[x+1 \text { for } x \text { in odds }]} \\
& {[2,4,6,8,10]}
\end{aligned}
$$

$$
\begin{aligned}
& {[x \text { for } x \text { in odds if } 252 x=0]} \\
& {[1,5]} \\
& {[x+1 \text { for } x \text { in odds if } 252 x=00]}
\end{aligned}
$$

Stings
exec ('cum....') \rightarrow does whatever's in string
In \rightarrow badisesh escapes following chunder
len (cire) - length of string

$$
\text { 'hex' in 'who's waldo?" } \rightarrow T_{\text {Twi }}
$$

Dititonanies
mum $=\left\{{ }^{\prime} I I^{\prime}: 1, V^{\prime}: s,{ }^{\prime} X^{\prime}: 10\right\}$
$\gg\left\{{ }^{\prime} X^{\prime}: 10, ' V ': 5, I^{\prime}: 1\right\} \longrightarrow$ free to shuffle, since they aren't tied down
$\operatorname{num}\left[x^{\prime} x^{\prime}\right]=10$

items $=\left[\left({ }^{\prime} x^{\prime}, 10\right),\left({ }^{\prime} v^{\prime}, s\right),\left({ }^{\prime} 1^{\prime}, 1\right)\right]$
dict (items) [' x^{\prime} ']
>7710
' x ' in huments

$$
\ggg \text { True }
$$

humurels get ($X^{\prime}, 0$)
$\$ 7710$
$\{x: x * x$ for x in rang $(10)\}$
$7750: 0,1: 1,2: 4 \ldots\}$

* cant put lists as keys

Limits on Dictionaries

- Dictionaries are unordered collections of key-value pairs
- Dictionary keys do have two restrictions:
- A key of a dictionary cannot be a list or a dictionary (or any mutable type)
- Two keys cannot be equal: Thess can be at most one value for a given key
- The fist restriction is tied to Python's underlying implementation of dictionanes
- If you wort to associate multiple values with a key, store them all in a sequence value

9/26/19-Lectux: Data Abstraction

Data Abstraction
Compound objects combine objects together
A date: a year, a month, and a day
An abstract data type lets us manipulate compound objects as units
Isolate two parts of any program that uses data:

- How data are represented (as parts)

How data are manipulated (as units)
Data Abstraction: A methodology by which functions enfone an abilinction bamier between representation and use

Rational Number

Pain
Representing Piss Using Lists

$$
\begin{array}{l|l}
\begin{array}{l|l}
\text { pair }=[1,2] & \text { A list literal: comr-sepabted expressions in brevet } \\
x, y=\text { pair } & \text { "unpacking" a list } \\
x & \\
\hline \gg 71 & \text { y } \\
\gg 72 &
\end{array} \\
\hline
\end{array}
$$

pair [0]
Element selection using selection opentor
2771
pair[1]

$$
\ggg 2
$$

getilem (pair, Element Selection function

$$
\gg 71
$$

from fractions import ged

$$
\begin{aligned}
& g=\operatorname{gcd}\left(n_{1} d\right) \\
& \quad \operatorname{retum}[n\|g, d\| g]
\end{aligned}
$$

Abstraction Bamer

implementation of lisks
Viol 2 hin of Abstaction Bamier
nstructor!
sonstructor! we

$$
\begin{aligned}
& \text { ad be } \\
& \text { Netional }(1,2) \text {, }
\end{aligned}
$$

atronal (lu)
def divide _rtional (x, y) :
whong!

$$
\text { retum }[x[0]) \text { \& } y[1], x[1] * y[07]
$$

rathind (numer (x) devom (y) denom(x) wumbrus))

Data Representation
What is Dan?

- We need to guarantee that constructor and selector functions work together to specify the right behavior
- Behavior condition: If we construct rational number x from numerator n and denominator d, then number $(x) /$ denom (x) must equal nod
- Data abstraction uses selectors and constructors to define behavior
- If behavior conditions are met, then the representation is valid You can recognize data abstraction by its behavior!

9125/19-Lectur: Tres
Box and Pointer Notation
The Closure Property of Data Types

- A method for combining data values satisfies the closure property if:

The result of combination can itself be combined using the same method

- Closure is powerful because it permits us to create hierarchical structures
- Hierarchical structures axe made up of pars, which themselves ax made up of park, and so on
lists can contain lists as elements (in addition)
Box-aud-Pointer Notation in Environment Diagrams
Lists ave represented as a row of index-labeled adjacent boxes, one per element Each box either contains a primitive value or points to a compound value

$$
\text { pair }=[1,2]
$$

$$
\text { nested_ list }=[[1,2],[] \text {, }
$$

$$
\left[\left[3, F_{2} \mid x, \text { None }\right]\right.
$$

$$
[4, \text { lambir:s }]]]
$$

Stiles

$$
\begin{aligned}
& \text { odds }=[3,5,7,9,11] \\
& \text { list }(\text { rage }(1,3)) \\
& {[1,2]}
\end{aligned}
$$

[odds $[1]$ for 1 in range $(1,3)]$

$$
\begin{array}{rlr}
\text { odds }[1 \cdot 3] & \text { odds }[: 3] & \text { odds }[1:] \\
{[5,7]} & {[3,5,7]} & {[5,7,9,11]} \\
& & * \text { no first value: beginning } \\
& \times \cdots \text { last } \quad \text { : end }
\end{array}
$$

Slicing Creates New Values
every time you slice, it creates a copy of the list, not changing the actual value

Processing Container Values
Several builtin functions take iterable arguments and aggregate them into a value

$$
\text { sum }(\text { ikenble }[\text {, star }]) \rightarrow \text { value }
$$

Return the sum of an iterable of numbers (NOT strings) plus the value of parameter 'stat' (which defaults to 0). When the iterable is empty, rectum start

$$
\begin{aligned}
& \quad \operatorname{sum}([2,3,4])=9 \text { sum }([2,3,4], 5)=(9+5)=14 \\
& {[2,3]+[4]=[2,3,4]} \\
& \max (\text { iterable }[1, \text { key }=\text { fun }]) \rightarrow \text { value } \\
& \max (\text { a, }, \text {, c. } \ldots[1, \text { key }=\text { fun }]]) \rightarrow \text { value }
\end{aligned}
$$

with a single itendle argument, velum its largest item With two or more arguments, velum the largest argument

* also min! any

$$
\max (\text { range }(10) \text {, key }=\operatorname{lambda} x: \underbrace{7-(x-4) *(x-2))})
$$

max of those values that akouputs of this function
all (itenble) \rightarrow boil
Retam Toe if boil (x) is True for all values x in the iterable
If the livable is empty, retum True

$$
\begin{aligned}
& \text { hood (The) bool(thllo) } \\
& \text { The The } \\
& \text { all ([xis for } x \text { in angels })] \text {) } \\
& \text { True } \\
& \text { all (angels)) } 01234 \\
& \text { False *O is ale }
\end{aligned}
$$

Trees

Recursive description (wooden true):
A true has a not label and a list of branches
Each bronc is a tree
A true with zero branches is called a leaf.
Relative description (family tres):
Each location in a tree is called a node
Exch node has a label that con be any value One node can be the parent/child of another

* People den refer to label by their locations:
"each parent is the sun of its children"
Implementing the Tree Abstraction
tree (3, [rue (1),

$$
\begin{aligned}
& \text { tree }(2,[\text { tree el), } \\
& \text { Tree (1) }])])
\end{aligned}
$$

$$
[3,[1],[2,[1],[1]]]
$$

- A re has a root label
and 2 list of branches
- Each branch is a tree
def tree (label, breeches= []):
for branch in bronchus:
assert is tree (bruch)
rectum [hel] + List (branches)
def is-hee (true):
rectum False
for branch in branches(tire):
if type(tre) ! = list or len(tree) <1 : * reams
if not is mere (branch): rectum false
rectum True
def bronchus (tree): *rectums list def is -left (tree): zretums True if brach is a
velum tee [1:] dissculaing 1^{5}
value

Tree Processing Uses Recursion
Processing a leaf is often the base case of a tree proussing function
The recursive case typically makes a recursive call on each branch, then aggregates def count-leaves (t) :
if is-leaf (t) :
sehurinl
else:
brach_counts = [count_leves (b) for b in branches (t)]
retum sum (branch-counts)
Discussion Question
implement leaves, which rectums a list of the leaf labels of a tree
Hint: If you sum a list of list, you get a list containing the elements of those lists

$$
\begin{aligned}
& \operatorname{sum}([1],[2,3],[4]],[7) \text { def levers (rec): } \\
& {[1,2,3,4]} \\
& \text { if is-leaf(trec): } \\
& \text { vetham }[1 \text { bal }(\text { the })]
\end{aligned}
$$

els:
rectum sum (List of Laves for exch brach, []))
Creating Trees
A function that creates a tree from another tree is typically also recursive def increment _ laves (t):
if is cleat (t) :
velum the $($ abd $(t)+1)$
else:
$b_{s}=$ [increment_leaves (b) for b in branches (t)]
rectum fra (label (t), bs)
def increment (t) :
rectum tree $($ abel $(t)+1$, $[$ increment (b) for b in branches $(t)])$

9/30119- Lecher: Mutable Values
Objects

'Monday. September 30' day ot weak
today. year
2019
today
dateline. dak e $20019,9,30$)

- objects rep info
- consist of data behavior, bundled to create abstraction
- can rep things, also properties, interactions, processes
- type of object: class, classes are first-class in Python
- Object-Onculed Programming
- metaphor for organizing large programs
- special syntax to improve code
- In Python, every value is object
- all objects have attributes
- dada manipulation happens through object methods
- functions do one thing, objects do many related things

Examples: Strings
'Hello'. <some function>()
Ascii code chart! string \leftrightarrow integers

* object was being changed, therefor both vars will

$$
\text { suits }=\text { ['coin', 'string', 'myriad' }]
$$ show the same

Suits
['coin', 'cup! 'sword', 'club'] suits ['coin', 'cup', 'Spader', 'club'] suits
['hest','diamond', 'spade', 'clubs'] oviginat "1

Some Objects Can Change
11 object changing state
same object can change through functions

* only dictionaries and lists can be mutated all
numerds.pop ('V')
* dictionary pop: pops off
numerals
key entered

$$
\left\{I^{\prime}: 1, ' X ': 10\right\}
$$

can Happen Within Function CaUl
A function can change the value of any object in its scope

$$
\text { four }=[1,2,3,4]^{\prime}
$$

$\left.\begin{array}{l|c}\operatorname{len} \text { (four) } & \text { def mystery (s) } \\ 4 & \text { def mysteng(s) } \\ \text { mystery (four) } & s \cdot \operatorname{pop}()\end{array} \quad s[2:]=[]\right]$

Tuples

$$
\begin{array}{cccc}
{[2,3,4,5]} & (2,3,4,5) & 2,3,45 & () \\
\text { list } & \text { tuple } & \text { tuple empty tuple }
\end{array}
$$

Lupus con be keys in dict

Tuples ax Immutable Sequenus

- Immutable values ax protected from mutation
- value of expression can change be changes in names or objects
- may still change if it contains a mutable value as an element

$$
\begin{array}{ll}
s=([1,2], 3) & s=([1,2], 3) \\
s[0]=4 & s[0][0]=4
\end{array}
$$

Sameness and Change

- as long as we never modify objects, a compound object is just the totality of its pieces
a national number is just its numentor and denominator
- this view is no longer valid in the presence of change
a compound data object has an "identity" in addition to the pies of which it is composed
a list is still "the same" list even if we changed its contents
- Conversely, we could have two lists that happen to have the same contents, but ak different

Identify Operators
Identity

$$
\langle\exp 0\rangle \text { is }\langle\exp 1\rangle
$$

evaluates to True if both evaluate to same object
Equality

$$
\langle\operatorname{expo}\rangle==\langle\exp 1\rangle
$$

evaluates to True if both <expo > and <exp 1> evaluate to equal values
Identical Objects are always equal values

10/0219-Lectux: Mutable Functions

* change value of variable in the parent frame in a smaller function wi non boas variables
- must have already been used above
- cant use houlocal var after already in local frame
* local? nonlocal lookup of balance procluces err!
* doesn't do that to list since list is mutable mutable function- variable in function always changing - john and steven not equal, since calls different functions w/ different funds
- even if same john and steven amount, still not equal
referentially transparent \# mutable functions
making it $10+b(4)$ different $b(3)+b(4)$
since x is nit changed

A Function With Behavior that Varies over Time

Reminder: Local Assignment
def perent-difference (x, y) :
difference $=2 h s(x-y) \rightarrow$ Assignment binds names) to value (s) in the rectum 100 * differenu/x first frame of current environment diff = penent_differenu (40,50)

Execution Rule for Assignment Stale ments:

1. Evaluate all expressions night of $=$, from left to right
2. Bind the names on the left to the resulting values in the current frame

Non-Local Assignment : Persistent Local State
def makl-withdraw (balonu):
deft withdrew (amount):
nonlocal balance \longrightarrow decay the name "balance" nonlocal at the top of the if amount> balance: body of the function in which it is re-assigned rectum 'Insufficient funds'
balance $=$ balanu-amount \rightarrow rebind balance in $1^{\text {st }}$ non-local velum balance frame in which it was bound previously retum withdraw

The Effects of Nonlocal Shtements
nonlocal chare?
Effect: Future assignments to that name change its preexisting binding in the firsthon local frame of the current environment in which that name is bound - non-local variable must be referenced to before function

- cannot have same variable in existing frame

The Many Meanings of Assignment Statements

- shot nonlocal statement
"x" not locally bound
- no nonlocal statement
"x" is bounded locally
- nonloal x
- nonlocal x
"x" is bound in nonlocal frame
- nonlocal x
x is not bound in a nou-local frame
- nonloal x
x is bound in noulocal fame X also bound locally
- create new binding from name "x" to 2 in first frame of current envibonment
- rebound "x" to 2 in first frame of current environment
- rebind x to 2 in fist non-loeal frame of the current envionment in which it was bound
- SyntaxEwor: no binding for nonlocal 'x 'found
- Syntax Emor: name ' x ' is parameter and noulocal

Python Brriculas
Python pre-computes which fame con hins each name before executing the body of a function
Within the body of a function, all inshnues of a name must refer to the same frame.

Mutable Values - mutable value can be changed without nonlocal statement

```
def make withdraw_list(balance):
    O=[\mathrm{ balance] ]}\longrightarrow\mathrm{ name bound outside}
    def withdraw(amount): of withdnw det
        if amount > b[0]:
            return 'Ifsufficient funds'
            b[0]=b[0] - amount
        return b[0]
    return withdraw
                    - element assigmment changes a list
withdraw = make_withdraw_list(100)
withdraw (25)
```

Multiple Mutable Functions

$$
\begin{aligned}
& \text { john }=\text { make }- \text { withdraw }(100) \\
& \text { steven }=\text { make }- \text { withdraw }(100000)
\end{aligned}
$$

* even if both have same amount in bank,
john is not steven John $==$ steven
True
still won't be equal, only
$j \operatorname{onn}(0)==\operatorname{steven}(0)$
will be equal

Refercutial Trusparcuy Lost

- Expressions are referentially transparent if substituting an expression with its value dues not change the meaning of a programe

$$
\operatorname{mul}(\operatorname{add}(2, \operatorname{mul}(4,6)), \operatorname{add}(3,5))
$$

$\operatorname{mul}(2 b, \operatorname{add}(3,5))$

- Mubtion operations violate the condition of referential transparency because they do mon than just retum a vale; they change the environment
referentially transparent $=$ mutable Functions making it $w+b(4)$ different $b(3)+b(4)$
Global frame sine x is nt changed

fl: f [parent=Global]

| x | 6 |
| ---: | :--- | :--- |
| 9 | - |
| Return
 value | \square |

f2: g [parent=f1]

fl: h [parent=f2]

| \mathbf{z} | $\frac{3}{2}$ |
| ---: | :--- | :--- |
| Return
 value | 10 |

$$
\begin{array}{|r|l|}
\mathrm{f} 4: \mathrm{h} \text { [parent }=\mathrm{f} 2 \text {] } & \\
z & 4 \\
\begin{array}{r}
\text { Return } \\
\text { value }
\end{array} & 12 \\
&
\end{array}
$$

Enviwumunt Diaghms

Go Bears!
def oski(bear):
def cal(berk):
$\xrightarrow[\text { oski } L]{\text { GF }}$ func oski(bear) $p=g$

list

$$
\begin{aligned}
& \frac{F 4: ~}{} \lambda(\text { ley }) \quad p=f 2 \\
& \log L 2 \\
& r v \leq 0
\end{aligned}
$$

10103119: Labs-Dałd Abstraction, Trees
Data Abstraction
allows you to treat any code as an object

- constructor: functions that build the abstract data type
- selectors: functions that retrieve information from the data type

Trees

- tree-dale structure that represents hienarky of information
- Constructor: true (label, bronchus = [7):

Selectors: label (tree) \rightarrow velum value in not node of thee branch $(t r e) \rightarrow$ return list of branches in given tree is_leaf(tree) \rightarrow rectums The if true's list of branches is empty and False otherwise

iteraloss
iterators
lecture

10105119: Lecture: Iterators
eltecators
A container can provide an iterator that provides access to its elements in some order ifer (iterable): rehum an itentor over the elements of an iterable value next (iterator): rectum the next element in an iterator

$$
\begin{aligned}
& s=[3,4,5] \\
& t=\text { ier }(s) \\
& \operatorname{next}(t) \rightarrow 3 \\
& \text { next }(t) \rightarrow 4
\end{aligned} \quad \quad \begin{aligned}
& \\
& \text { next }(4) \rightarrow 3 \\
& \text { next }(t) \rightarrow 5
\end{aligned} \quad \text { next }(4) \rightarrow 4
$$

* ier creates the iterator, next calls the next value to iterate on
* new ikentors over same value doesn't mess with old one

$$
\begin{aligned}
& s=[[1,2], 3,4,5] \\
& t=\operatorname{iter}(s) \\
& \text { next }(t) \rightarrow[1,2] \\
& \text { next }(t) \rightarrow 3 \\
& \text { list }(t) \rightarrow[4,5] * \text { displays what's left } \\
& \\
& \text { mat }(t) \rightarrow \text { Stopttention * enor showing end of itention }
\end{aligned}
$$

Dictionary
Views of a Dictionary

- An ienble value is anything that can be passed to ier to produce an iterator

An itentor is resumed from ifer and can be passed to next; all iterators are mutable
A dictionary, its keys, its values, and its items are all iterable values

- The order of items in a dictionary is the order in which they were added
- Historically, items appeared in an arbitrary order

$$
\begin{aligned}
& d=\{\text { 'one':1, 'two':2, 'the": 3\} ~ } \\
& d[\text { zero' }]=0 \\
& k=\operatorname{iter}(d \cdot \text { keys ()) (or ster (d)) } \quad v=i t e r(d \cdot \operatorname{valmes}()) \\
& \text { next }(k) \rightarrow \text { 'one' next }(v) \rightarrow 1 \\
& \text { hast }(k) \rightarrow \text { 'two' } \\
& \text { next }(v) \rightarrow 2 \\
& \operatorname{hext}(v) \rightarrow 3 \\
& \operatorname{next}(v) \rightarrow 0 \\
& i=i k e r(d . i t e m s()) \\
& \operatorname{hext}(k) \rightarrow \text { 'three' } \\
& (d \text { - values }()) \rightarrow \text { just value } \\
& \text { next (i) } \rightarrow \text { ('one', l) } \\
& \text { next (i) } \rightarrow \text { (two; 2) } \\
& \text { next (i) } \rightarrow \text { ('the', 3) } \\
& \text { next }(k) \rightarrow \text { 'zeno' } \\
& \text { next (i) } \rightarrow \text { (zeno', 0) } \\
& (\text { d.keys }()) \rightarrow \text { just key } \\
& (\text { items })) \rightarrow \text { supple of both }
\end{aligned}
$$

next $(k) \longrightarrow$ produces an enor since size of dictionary changed

* can modify already created keys within dictionary, but cannot add new ones

For Statements

$$
\left.\begin{array}{ll}
r=\text { range (} 3,5 \text {) } \\
\text { list }(r) \\
{[3,4,5]}
\end{array} \quad \begin{array}{l}
\text { ni=iler }(r) \\
\\
\\
\\
\\
\text { next }\left(r^{\prime}\right) \longrightarrow 3 \\
\text { for in } \dot{n} \\
\text { print }(i)
\end{array}\right\} 4,5 \begin{aligned}
& \text { for loop can work } \\
& w / \text { iterable function, } \\
& \text { immediately goes through } \\
& \text { all ives to end }
\end{aligned}
$$

Built-in Functions for lection
Many built-in Python sequence opentions that retum iterators that compute results lazily $\operatorname{map}($ func, itenble): lIcente over func (x) for x in iterable filler (func, itesble): Henge over x in itesble it fund (x) zip (fist_ifer, second_iter): lterte over co-indexed (x, y) pain reversed (sequence): Hent over x in a sequence in reverse order
To view the contents of an itentor, play the resulting elements into a container list (itenble): create a list confining all x in itenble tuple literbble): create a tuple containing all x in iterable
sone likenble): create a sorted list continuing x in iterable

$$
m=\operatorname{map}(\text { lambda } x: x \cdot \operatorname{upper}(), \text { bed }) \neq \text { if just map }(b l a h, b 1 a h) \text { then it }
$$

$$
\operatorname{list}\left(\text { filter }\left(t, m_{2 p}(\text { double, range }(3,3))\right)\right.
$$

$$
[10,12]
$$

$$
\begin{aligned}
& b c d=\left[b^{\prime},{ }^{\prime}, c^{\prime}, \quad d '\right] \\
& \text { [x.upper() for } x \text { in bcd }] \rightarrow\left[B^{\prime},{ }^{\prime} C^{\prime}, ' D '\right] \\
& \text { ort }(m) \rightarrow ' B^{\prime} \\
& \text { next }(m) \longrightarrow C^{\prime} C^{\prime} \\
& \text { next }(m) \longrightarrow C^{\prime} \\
& \text { next }(m) \rightarrow \text { Stoplieration } \\
& \begin{array}{ll}
m=\text { map (double, range }(3,7)) & \begin{array}{l}
\text { next }(t)
\end{array} \rightarrow 10 \\
f=\operatorname{lambda} y: y z=10 & 3 \Rightarrow 6 * * \\
t=\text { fiber }(f, m) & 4 \Rightarrow 8 * * \\
& 5 \Rightarrow 10 * *
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& d=\{\text { 'one': 1, 'two': 2\} } \\
& d=\{\text { 'one: } 1, \quad \text { 'two': } 2, ~ ' z e n o ': 1\} \\
& k=\operatorname{lier}(d) \\
& d[\text { 'zero }]=0 \\
& \begin{array}{l}
k=i l e r(d) \\
d=[\text { zero' }]=0
\end{array} \text { wouldn't emo }
\end{aligned}
$$

