
f- = G , 2, 3,2 , I]
reversed (t) → returns function
reversed Ct) = = t FALSE since one is function and other is list

liAGevusedHD==tT#
D= { ' a' :L , ' b ' : 2}
items = ilercd. items u) items = zip (d.keys 4, d. valuesG)
next (items)→ (' a' :D next Likins) - ('b: 2)

•¥.
Generators

Generator and Generator Functions
def plus- minus Cx): t -- plus - minus .

yield u next Ct)→ 3

yield-u next Ct) i. -3
A generator function is a function that yields values instead of returning them
A- normal function returns once; a generator function can yield multiple times
A generator is an iterator created automatically by calling a generator function
when a generator function is called, it retains a generator that iterates over its yields

deferens(start,end): list Levens (lilos)
even = state (start 92) [446,8]
while even send: f- evens Gilo)

yield even next Lt)→2 hudtttale
even-1=2 next -4 next → 8

Generators 's, debtors
Generators can Yield from aerators

A yield from statement yields all values from an iterator or ikheble
list la- then-b (GM]

, G. 6])
def 2-then-b Gib) : def' 2-then-bGidi def countdown 44 :

for X in a : yield from 2 if KZO :

yields yield fromb yieldK
for yin b: yield from
giddy countdown (Kt)

104/077/4199 : Geetha : Objects→
Object - oriented Programming

A method for organizing Modular Programs
- Abstraction Barriers
- Bundling Together Information and related behavior

A metaphor for computation using distributed state
- each object has its own local state
- each object also knows how to manage its own local shale , based on
method calls

-method calls are messages passed between objects
-several objects may all he instances of a common type
- different types may relate to each other

Specialized syntax is Vocabulary to support this metaphor

classes
A class serves as a template for its instances a = Account (' Jim')

Idea: All bank accounts have a balances 2. holder-
'

Jim
'

and an account holder; the account 2 - balance → 0

class should add those attributes to each

newly created instances

a. deposit as) → 15

Idea: AH bank accounts should have "withdraw
"

a. withdraw Ceo) - S

and deposit behaviors that all work the a- balance → 5

same way a - withdraw 40) →
'

Insufficient funds
'

Better telld '. All bank accounts share a
"
withdrew "

method and a
"

deposit
"

method

Class statements :

class <names :
<suite>

A class statement creates a new class and binds that class to Cname> in the

first frame of the current environment.

Assignment I def statement in < suite> create attributes of the class (not names

in frames)
class clown :

nose=
'

big and red
'

def dance C) :

return ' No thanks
'

clown . nose →
'

big and red'

clown .dance C)→ ' No thanks
'

Clown→ the physical class

object construction
Idea : All bank accounts have a balance and an account holder; the Account class should

add those attributes to each of its instances
D= Account (' Jim ') a. balance- O

2. holder→ '

Jim'

when a class is called :

I. A new instance of that class is created bzlznuioholder.si#T
2. The - iwit- method of the class is called with the new object as its

first argument (named. self) , along with any additional arguments
provided in the call expression

class Account :

def - init- (self , account-holder) :

self .bz/2hU=O

Self - holder- account-holder

Object Identity
Every object that is an instance of a user- defined class has a unique identity:

a = Account (' Jim') 2.balance = O

b = Account (' Jack') b .
holder =

'
Jack'€

. every call to Account creates a new Account instance. only 1 Account class

Method

Methods are defined in the suite of a class statement
class Account :

def
-
init- (self . account

-
holder) :

/ self . balance O

self - holder= account
-
holder

¥÷÷÷÷:tinamou.
def withdraw (self . amount) :

if amount > self - balance :

I return ' Insufficient| self - balance = self -balance- amount

return self - balance

These def statements create function objects as always, but their names
are bound as attributes of theclass

Invoking Methods
All invoked methods have access to the object via the self parameter, and so they
can all access and manipulate the objects state

class Account: -2.2 arguments * self . whateverdef deposit (self , account) : ↳ access
self . balance= self . balance t amount variables insidethe

return self - balance class

Dot notation automatically supplies the first argument to a method.

tom
-
account = Account (' Tour')

tom
- account . deposit 400)- too

Dot Expressions
objects review messages via dot notation.
Dot notation accesses attributes of the islance or its class . < expression? . shame>

The expression> can be any valid Python expression.
The shame> mustbea simple name

Evaluate to the value of the attribute looked up by shame> in the object that is the
value of the cexpressions

Accessing Attributes
Using getattr, we can look up an attribute using a string

getattr (tom-account, ' balance')- 18

hasath (tom- account, ' deposit') t True

getath and dot expressions look up a name in the same way
looking up an attribute name in an object may return:

•

one of its instance attributes, or
• one of the attributes of its class

Methods and Functions

Python distinguishes between :

• Functions
, which we have been creating since the beginning of the course, and

a Boundthllhods which couple together a function and the object on which the
method will be invoked

object t function = bound method

1019911999 : Lemma : InukaiKanna
#

Deadline :

. HWY / lab IHUG comp due Monday
' Anh checkpoint due Tuesday , Early submission for Thursday

Terminology : Attributes ,
Functions

,
and Methods

' all objects have attributes , which are name-value pain
' classes are objects too , so they have attributes
° instance attribute: attribute of an instance
- class attribute: attribute of the class of an instance

Terminology :

it:"a.m.
in:c::O::::c;÷m

:

' bound methods are also objects : a function that has its first parameter
"self " already

bound to an instance
• dot expressions evaluate to bound methods for class attributes that are functions

< instance > . < method
-
name>

Reminder : Looking Up Attributes by Name
<expression> .

Cname>

To evaluate a dot expression :

I. Evaluate the <expression> to the left of the dot , which yields the object of the

dot expression
2. aname> is matched against the instance attributes of that object ; if an attribute with that
name exists , its value is returned

3
.
If not <name> is looked up in the class ,

which yields a class attribute value

4. That value is returned unless it is a function
, in which case a bound method is

returned instead

Assignment to Attributes
" if object is instance , then assignment sets instance attribute
• if object is class

,
then assignment sets class attribute

class Account : tom
-

account . interest -- o- 08

interest -- o -02 instance attribute assignment
def
-
init- (self , holder):

self - holder -- holder account . interest -- 0.04
self -balance = o class attribute assignment

tom
-
account = Account C

'
Tom ')

tom
-
account . interest → o - 02 jim- account . interest - o - 08

Account . interest wa 0.04 AM
- account - interest → 0-07 (still)

tom
-
account . interest → o- 04

Inheritance
' same attributes of parent w/ some different special- case behavior

class shames (ebase class >I :
<suite>

'
" shares attributes"

, can override inherited characteristics

Inheritance Example
class checkingAccount (Account) :
withdraw- ke- I

interest-- O - ol

def withdraw (self , amount) :
return Account - withdraw (self , amount t self - withdraw- feel

Looking up Attribute Names
. it in class return attributevalue
'

otherwise look in base class

101111944 -Geetha- Bhupensanitation
I

sting Representation
Shing Rep
- An object should behave like kind of data meant to rep
- for instance, by producing string rep of itself
- all objects produce 2 string reps :
- she - legible to humans
- rpr- legible to Python intemp

- often same , sometimes differ

The Npr string for an Object
reprretums python expression (Shing) that evaluates to an
equal object

reprlobject)- string
12 e12 → R 0600066

print (Mpr (the121) → 12000000060

repr(min)- L built - in function>

The Str string for an object
Human ikhobu strings :

half = Fraction (I , 2)

Npr (half) → Frdctioh Cl , 2)
Str (half) → ' 1/2

'

result of calling Str on value is what Python prints using
print function :

print (half) 2B
' l?

*
unit
or
"
"

msn.am:
now
or

or

Polymorphic Functions
Polymorphic Functions

poly . func : function that applies to many (poly) different forms
(morph) of data

strand repr both polymorphic; apply to any object
repr invokes a zero

- argument method - repp- on its argument
shr is

Implementing repr and she

- behavior of npr more complicated than invoking -repron its argument :
- an instance attribute called

-mph is ignored! only class attributes
are found

- behavior of Str is also complicated :
-

an instance called - str- is ignored
- if no
-
str- attribute is found, uses repr string

- Str is a class
,
not a function

11001/1441/1199 : Kellan : Ccoommppoossiitliioonn
#

Announcement
- Ants due tmrw si thursday

.

-

Hoh due today
Hw is lab today

Linked list
- either empty or consists of first value i, rest of linked list

3
,
4

,
5

q÷÷÷et÷÷÷a÷÷÷¥"a
. ..

+ (pm)
• linked list is a pair element rested in

linked
is attribute

Wahl

link G,
H
, DinkG , Dink. empty)))
-

enumeration
evaluate

Linked list Class
linked list class : attributes passed it - init-
class Link:
det
-
init
- (self , first , rest-- empty) :

assert rest is link- empty or instance (rest , link)
self . first = first #

returns
whether

self - rest -- rest rest is a link

help(instance) : return whether object is an instance or a subclass
S . first → 3 9. rest - rest = link. empty
s . rest . first → 4 S -• link 16 , link G))
s. rest . rest . first -• 5

Link(l , link (Linkh , linkG)) , 4) → L l L 23 2 47

Property Methods
@ property
@ second - setter

Tree class
has a label 's

, list of branches; each branch is a Free
class Tree :

def
-
init
- (self , label, branches = [T) :

- sfYYmm-ih.TL branches: } au in a class insteadassert is instance (branch, Tree) of methods !
- self . branches = list (branches)

1019661199 -- Kelkar : Efficiency
I

- do HW5 on a piece of paper for practice
- today is last day of content for midterm 2
- 2 sided sheets for midterm
- no BTru class this gem

Measuring Efficiency
Recursive computation of the Fib Sequence

def fiber) : fib = count (fib)
if u c -- l : fits (5)

return n fib . call
-
count -• 15

return G-bln-2) + fib (ht)

def count ft) :

def counted cu) :
counted. call

-
count -1=1 w

i:÷÷÷÷¥. . } :÷:#
in
.mn

Memorization
Idea : remember the results that have been computed before

def memo Ct)
cache= { } a- empty cache fits-- counted(Eib)
def memoized (n) : counted

-

fib = fib

it n not in cache:

cachefr] = flu) } saves in cache
fib= memo (fib)

fib = count Cfrb)
return cacheCn]

return memorized

Exponential-ng
Goal: one more multiplication UB us double the problem size
def exp (bin) :

if u= = O :

return I bn , { I it h=o

b. b
"" otherwise

else:

return b* exp(b ,n-D
if u-0

def exp-fast (bin): b" = { Clb 'kn)' if his even
if h==o: b.but if u is odd

return 1

elif hole 2--20 def squareCx) :

return square (exp- fast think)) x * x

else:

return b * exp- fast (b ,
n-D

Linear Time: Log Time:
- doubling input → doubles time - doubling input increases time by

constant C

Orders of Growth
Quadratic Time

Functions that process all pairs of values in a sequence of length
n take quadratic time

Exponential Time
Tru- recursive functions can take exponential time

Common orders of Growth
a - b"" =p -bh)- b Exponential Growth: recursive fib

incrementing n multiples time by a constant

a .@ti)!@an')-12 . Gutt) Quadratic Growth . overlap

incrementing n increases time by n times a constant
2. (htt)= (a - n) t a Linear Growth slow exp.

incrementing n increases time by a constant
2 . .lu (2 - n) -- (2.lunk Logarithmic Growth exp

-
fast

2 " en2 doubling n only increments time by a constant
constant Growth Increasing n doesn't affect time

Space and Environments
- which environment frames do we need to keep during evaluation?
- At any moment there is a set of active environments
- Values and frames in active environment consume memory
- Memory that is used for other values and frames can be recycled

Active Environments
- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments

Efficiency:
fastest 0h)

o (log n)

I :c:;
slotest ' b' tbh)

n

1019881199- Beetham: mmposition
Modular Design

separation of concerns
- A design principle: isolate different parts of a program that address different concerns
- A modular component can be tested individually

playernos 's

men.
- Game Rules - event descriptions
- ordering of Events - statetracking to
- State tracking to generate commentary
determine the winner

Ants AgYmuYaY⑤ Actions TuYYmc④
- characteristics of - entrances I exits

- order of actions different ants
- location of insects

- food tracking i. bees
-

game ending
conditions

Restaurant search ID :

Restaurant search Data

-

104221%99 - Thumma Berrien
-

f-= → mutable

Lists in Environment Diagrams
-

+→ v. not
mutant

Assume:

s
-
- [43]

1- = Gib]

OIFExampuiuwba.ws

append- adds one s - appendLH s - [4316,67] SL-102*7
elemeuttoalistt-otaotLOX.TT
extend- adds all elements s . extend It) s - G. 3.5.63 SL-

raopin one list to another th] -- O t- G.of ftp.fs.o] 2/3/25/6

a:÷÷÷.io/::s:ii?H:i::...i.tFI.i:?#
existing elements all]=9

band -- O b - G. GOD aL-•µ
bl-B.TW

Fine:÷÷÷¥i%µEto'µ:Esliaassighmntsfo.ro#
replaces a slice with sq :]=t
new values

ft " O

f /÷:÷÷÷÷÷÷÷:÷i÷÷÷÷:i÷÷sliaassighme#
can remove elements from SC:L) : safe)
qhjstfyasswiginstco.it. F.

10422991199 - Beata : #hemme
Scheme fundamentals

- primitive expressions : 2 . 3.3 , true, t , quotient . . -

' combinations: (quotient 102), (not true) . . -

numbers are self- evaluating, symbols are bound to values

call expressions include an operator and O or more operands in parentheses
(quotient to 2) > 5 (t I 2 3 4)
(quotient (

+ 8 7) 5) > 3 > to 7 (integer? 2.2)
(t (* 3 (e) # f

(t (* 2 4) > O >(integer? t)
(t 3 S))) (* I 2 4) # t

(t C- it) > 24

6)) (*I
257 71

(number? 3)
> # t

(number? e)
> #f

- ① evaluate predicate, then consequence)
Special forms- alternative

A combination that is not a call expression is a special form:
" If expression : (it <predicate> < consequences -521kmalive>)
° and and or : (and le. > . . - Lens) (or se .) . . . Lens)
' binding symbols : (define <symbol> <expression >)
"

new procedures : (define ksymbols shownat parameters)) <body>)
(define pi 3.14)
(* pi z)
#pi =3- 14 (assignment

> 6.28

(define labs as) (abs - 3)
City x o) 73
(-X) }-'

f less than 0 , make - X

X)) or else just return n

(define (sqTEe)(*xx)# 5942k a bound to x * x

>

594Mt
avenge × y bound to X '9/2(define (average n y)

(/ (t Xy) 2))

mo var

(define (sat a) ~. var
(define (Tp date guess)
(if =L square guess) n)
guess
(update (average guess (Ix guess)))))

cupulate)
↳ runs recursion keeper

Lambda Expressions
Lambda expressions evaluate to anonymous procedures

(lambda (a formal - parameters >) abody>)
Two equivalent expressions :
(define (plus 4 a) (t x Y))
(define plus Y (lambda Cx) (x xY)))

An operator can be a call expression too :
((lambda Cx y 3) (t XY (square z))) I 23)
-

evaluates to X e ye 22

Lists
• cons : two- argument procedure that creates a linked list (cons 2 nil)
. car: returns 1st element of list

1£. nil
- car: returns rest of list
• nil: the empty list TA
* scheme lists written in parenthesis w/ elements separated by spaces

(cons l (cons 2 nil)) IF TX
> (I 2)

(define a (cons 1 (cons 2 will)

x

> (I 2)

(car x)
21

(Cdr a)
22

(cons l (cons 2 (cons 3 (cons u nil))))
late# D- FA

(1 2 34)

(define s (cons 1 (cons 2 nil)))
> s

s

r u 4 Dir
(cons 3 s)
(312) tf TEH

(cons 4 (cows 3 s))
(4 3 I 2) D-TIT TH

(cons (cons 4 (cons 3 n))

(H 3) I 2)II. D-
TX

(car (cons (cons 4 (cons 3 n)))142-1321
w.us)

(car(car(cons (cons 4 (cons 3 n))))
L. 4

(cons (con s nil))

TY III
((121112))

✓ (list? s) # t (nul? nil) # t
*Th (list? 3) # f (wut? s) #f

(list? Kass)) #f

(list 1 2 34) D- 147 III. Dull

Symbolic Programming
Using text in scheme:

'

(list '

d ' b) → (ab)
" (abc) - (a b c) or quote a)
(car '

Cabe)) → a

(cdr " label) - (bc)

10xH3304199.EE#aipHioM$
Handling Errors
sometimes computer programs in non-standard ways

' A function receives an argument value of improper type
- Some resource is not available
" network connection lost in the middle of data transmission

Exceptions
• Built-in mechanism in a programming language to declare and respond to
exceptional conditions

• Python noises exception whenever error occurs
• Exceptions can be handled by the program, preventing the interpreter from
halting

. Unhandled exceptions will cause Python to halt execution and print a shack
trace

Mastering Exceptions
' Exceptions are objects ! They have classes with Constructors
° They enable non-local continuations of control:
• If f calls g and g calls h, exceptions can shift control from h to f
wlout waiting for g to return

Raise Exceptions
Assert statements
Assert statements noise an exception of type AssertionError

assert C expression> ,
a stringy

Assertions are designed to be used liberally. They can be
ignored to increase efficiency by running Python with the
-o flag .

Python3 - o

assert False,
' Error' - debug-→ False AssertionError False

Raise statements
• Exceptions are raised with a noise statement

noise <expression>
• <expression7 must evaluate to a subclass of BaseException or an
instance of one

• Exceptions are constructed like any other object
TypeError - function passed w/ wrong number 1argument type

abs (
' Hello ') ; Type Error

NameError - A name wasn't found
'

hello
'

→ NameError , hello is not defined

keyError - A key wasn't found in a dictionary
{ } (' hello ']

RuntimeError - catch all for troubles during interpretation
def fl) : f-C) → RuntimeError

Try statements
Tnf statements
Try statements handle exceptions

try :

<try suite>
except <exception class> as aname> :
<except suite>

Execution Rule
. The < try suite> is executed first
- tf , during the course of executing the Cky suite> an exception is
raised that is not handled otherwise , and

. If the class of the exception inherits from cexception classy, then
- The <except suite> is executed, with aname> bound to the exception

Handling exceptions
- exception handling can prevent a program from terminating

try :
X = Yo

except ZeroDivisionError as e :

print (
'

handling a
'

typele))
X= 0

Multiple Thy statements :
control jumps to except suite of the most recent try statements
that handles that type of exception

def inverted def invert- safeGe) :

y
-
- Yu try :

print (' Never printed if X is o
') return inverted

return y except ZeroDivisionError as e :

print (
' handled

'

, e)
return 0

10101119-kuuuicakula.br
Announcements:
- Guerilla for Hur
- him in HW !
- project next week!

Programming Languages
- computer can execute many different languages
- machine language- invoke operations implemented by circuitry of CPU

- operations refer to hardware memory, no abstraction mechanisms
- High level languages: statements interpreted by another program or compiled into
another language

- provide abstraction , naming, function defining , objects
- abstract system details to independent hardware

Metalinguistic Abstraction
- define new language tailored to particular type of application or problem domain
- Type of application : Erlang was designed for concurrent programs , has built - in elements
for expressing concurrent communication

- Problem domain: MediaWiki mark-up designed for generating static web pages
- Programming language has :

- Syntax : legal statements and expressions
- Semantics : execution/ evaluation rule

- To create a new programming languid ,

need:
- specification : document describing precise syntax
- canonical implementation: interpreter or compiler

parsing
Reading Scheme Lists
task of parsing together elements creates a string of

Parser

takes text and returns an expression

text - lexical analysis - tokens → syntactical analysis- expression
t. I

.

- iterative process - free recursion
- checks malformed tokens < balances parenthesis
- determines types of tokens . returns Tree structure
-

process one line @ time
o process multiple lines

Syntactical Analysis
- identifies hierarchical structure of expression , nested
-

each call to scheme- head consumes input tokens

make honking

1140441199 - Bethune :÷. Hunterpprredtoobs
The structure of an Interpreter

app AB •BB OB BB÷÷÷÷÷÷÷÷÷÷÷÷i÷÷
. i¥÷"7%7%84'II user-defined procedures

c÷÷÷÷÷÷÷:
Scheme evaluation
The scheme- eval function choose behavior based on expression form :

- symbols in enviro
- self - evaluating expressions are returned as values

• all other an represented as scheme lists, called combinations
if <predicate> a consequent> C alternatives

lambda (c formal- parameters s) ebody>)
(define chrome> <expressions)

((operator> Copeland o> . . . CopelandKs)
(define (demos) (if (hull? s) " (3) (cons (cars) (demo (Cdr s)))))

(demo (list 12))
↳ TIFt TX

Logical special Forms .

May only evaluate some sub- exp .
if : (if Cp red> (cons .? catty)

more to copy
a.

dimon hoggatt speciatatfoemrw

Quotation
quote special form evaluates to quoted expression, not evaluated

(quote expressions) (quote (th)) kd (t I 2)
(expression>

11/06/79 - Lecture Tail calls
Dynamic scope

lexical (static slope- ways names looked up ,
most typicalway ; see what name is by

inspecting definition
lexical scope: parent of fame is enviro when procedure was defined
dynamical slope: " " " " called

(define f (Ya cul ft x y)))
(define g (lambda (x y) (f (t xx))))
'93 "↳ see;÷q%%:i%mK÷"m%nb

in project
4)

lexical scope : error! ± A

dynamic scope: parent for f's fame is g's fame fL-
KH)

gL- xxy)

flip ftp.fl
X G x Lb

y U

Tail Recursion
Functional Programming

- All functions are pure
- No reassignment, no mutable types
- No name bindings permanent
- adv of functional programming

-value of exp is independent of order
- sub exp evaluated parallel Idemand
- referential transparency: does not change when we substitute one of its subexp.

no white Ifor statements

Recursion and Iteration
factorial Chik) ; computes: ht. * k

def factorial lurk) : Timespan def factorial lurk) : timespan
if h==O :

-

Linear while u> o , linear constant

returnk n ,K = n-I . Koth

else: return tutorialth- I , Kan) return k

- scheme is the recursive l
lie

Tail call
tail call is a call in tail context :
- last body sub - exp in a lambda expression
. sub -exp 293 in a tail context if expression
- all non-predicate sub- exp in hail context could
- last sub-exp in a tail context and , or , begin, let

a
method
(
compute)

§ last
thing

you
do
in

fdehhl (factorial n k)
(if (= n O) K
(factorial f n It

(* k u)))) * if tail recursive in scheme, then
is linear space

Evaluate with Tail optimization

MH8119-teuna.name
A scheme Expression is a scheme List
scheme programs consist of expressions , which can be :

a primitive expressions : 2 3.3 true x quotient
. combinations : (quotient 10 2) (not true)

The built-in scheme list data structure (which is a linked list can represent combination
(list

'

quotient 10 2)
(quotient to 2)
(eval (list

'

quotient 10 2))
5

(list t I 2) (list '
t l Lt 23))

↳ * Ee] , a)
d."Ft

'

In' " ↳ (+ is,

(def (tht n) (fact 5) a 120
if f- h O) I txt h (fact C- n l))))) (fact - exp 5) →(define (fact - exp n)
it f- h O) l (list '

* n (fact- exp th i))))) (* 5 (* 4 (* 3 H2 (* 1111111

Macros perform Code Transformations
A macro is an operation performed on the source code of a program before
evaluation .

Macros exist in many languages , but are easiest to define correctly in Lisp
scheme has a define-macho special from that defines a source code
transformation

(define-macro (twice expr)) (twice (print 2))
(list ' begin expr expr) 2 2

Evaluation procedure of a macro call expression :
' Evaluate the operator sub- expression ,

which evaluates to a macro

- call the macro procedure on the operand expressions w/out evaluating first
-- Evaluate expression returned from the macro procedure

Macro - crash course
① Evaluate what you want it to return
② quasiquote everything
③ unquote all the variables and the numbers , keep
the function names and arithmetic symbols since

you actually want them

Macy
*Harasses,

Kit gondit ion) Icon 'segl CSD
* quasiquote everything
if want word - leave alone p

if want the variable→ a unquote t
j
n 7

for var in self Hoh)) n n

w n
'

(map ,ten ,seq)
I

-

.S T
' (④ ax 2) - xt
La would look for variable n) + (

S od
(list 'map fun sear) KO r

without macros :

(define (twice expr) (list
'

begin exprexpr)) (define-macro .
.
- -

-)
(twice '

print 2))
(eval (twice

'

(print 2))) (twill (print 2))
2& 'mzeros take care of not doing
this twice

For Macro

Define a macro that evaluates an expression for each value in a sequence
(define (map fu VHS)
(if (null? vids)
4

(cons (fu (car vats))
(map fu (cdr Vals)))))

(map (lambda te) (* a a) I
' (2 3 45))

k Ce sus) Cst x x)

(define-macro (for Sym vats expr)
(list '

map (list ' lambda (list Sym) expv) Vals))

(for n
' (2345) (* x u))

Quasi - Quotation
ygbc)

'

quotes everything (define expr
' (* nm))

babe . Unquotes part expy
'

(abc) '

(lambda (n) , expr)
↳ (a b c) llambda (n) (* AND
'

(d ,
b c)

↳ (a 2 c)

10/13179 - Lecture : streams
Order of Growth
Big Theta and Big O Notation for orders of Growth
- Exponential Growth eg .

recursive fib 0 (bn)

incrementing n multiplies time by a constant
- Quadratic Growth es . overlap

incrementing n increases time by n times a constant O Lu')
- Linear Growth eg . slow exp

incrementing n increases time by a constant ⑦ Cul
- Logarithmic Growth eg . slow exp

incrementing n increases time by a constant Ocu)

- constant Growth increasing n doesn't affect time 04)

Efficient sequence Processing
sequence operations

Map , filler, and reduce express sequence manipulation using
compact expressions

ex: sum all primes in an interval from a (inclusive) to b (exclusive)
def sum- primes la , b) : def sum- primes Ca ,b) i

total = O return sum (filler (is -prime , range (ab)))
a-a sum - primes (I , 6)
while xcb :

it is - primeCa) :

total = tohalt u

x-- Xt I

return total

space : OU) space : Ou)

streams
streams are Lazy scheme lists
A stream is a list

,
but the rest of the list is computed only when

needed :

(car (cons I mil)) → I (car (cons - stream I nil)) - I
(Cdr (cons I nil)) → C) (Cdr - stream (cons - stream l nil)) - C)
(cons 1 (cons 2 nil)) (cons - stream 1 (cons- stream 2 nil))

Emts only occur when expression is evaluated :

(cons 1 (cons (l l O) nil)) → error

(cons- stream I (cons - stream (l l O) nil)) -0 (I . # (promise not forced))
(car (cons- stream 1 (cons - stream (l l O) nil)) -ra 1

(Cdr -stream (cons- stream 1 (cons - stream (l l O) nil))-• error
streams Ranges are Implicit

A- stream can give on -demand access to each element in order

Infinite stream

Integer stream
- An integer stream is a stream of consecutive integers
- The rest of the stream is not yet computed when the stream is created

(define (int- stream stream)
(cons - stream start (int - stream (+ start 1))))

Recursively Defined stream
The rest of a constant stream is the constant stream
(define ones (cons - stream I ones))

combine two streams by separating each into car and Cdr
(define (add-streams s t)
(cons- stream (t (cars) (car t))
(add- stream (car - stream s)

(Cdr - stream t))))

(define ink (cons-stream 1 (add- stream ones inmy

Higher - order Functions
Higher - order Functions on streams
implementations are identical , but change cons to cons-stream

and Cdr to Cdr - stream

t5/19-DedantiveLanguages
Declarative languages
Database Management systems

Database management systems (DBMS) are important
Table is a collection of records
SQL most widely used , declarative

Declarative Programming
In declarative languages such as SQL 4 prolog :
- d

"

program
"
is a description of the desired result

- interpreter figures out how to generate result
In an imperative language such as Python I scheme
- a

"

program
"

is a description of computational processes
- the interpreter carries out execution evaluation rules
creak table cities as

select 38 as latitude, 122 as longitude,
" Berkeley

"

as name union

cYoI§ select 42 ,} vianwyswmn 21
,

' ' Cambridge" } union
select 45 , 93 ,

' ' Minneapolis" ; more
columns
then

select " West coast
' '

as region , name from cities where longitude>= us union
name from cities where longitude sus

structured Query Language (SQL)
SQL overview

SQK language is ANSI and ISO standard ,
but DBMS

- a select statement creates a new table
- a creak table gives global name to a table
- most important action is select statement

Selecting Value literals
A select statement always includes a comma- separated list of
column descriptions

A column description is an expression , optionally followed by as

and a column name
select [exp] as [name] , [exp] as [name] ;

selecting literals creates a one- row table

The union of 2 select statements is a table containing the rows of both
of their results
select

" abraham" as parent ,
" barack" as child union ;

select " abrdham"
,

"
Clinton

' '

union;

A creak table statement gives the result a name

Projecting Table
select statements project Existing Tables

A select statement can specify an input table using a from clause

A subset of the rows of the input table can be selected using a
where clause

An ordering over the remaining rows can be declared using an
order by clause

column descriptions determine how each input row is projected to a
result now

select [exp] as [name] , [exp] as name .
. .

A- creates table

select [column] from[table] when [card] order by [order) ;
select child from parents when parent =

" abraham
"

;
'

Iwate children column when parent is abraham
select parent from parent where parent > childIseult parents from parent table where parent is alphabetically before child

Arithmetic in select Expressions
In a select expression , column names evaluate to row values
Arithmetic expressions can combine how values and constants
creak table lift as

select 101 as chair , 2 as single , 2 as couple union

select 102 ,
O

,
3 union

select 103 ,
4

,
I i

select chair, single t 2 * couple as total from lift;
-- -
chain

totalµ

1911881199- Talkies.
Joining Tables
Two tables Asi B are joined by a comma to yield all combos of a row
from A 2nd row from B

select the parents of curly - furred dogs
select parent from parents , dogs •- makes table w/ all

combos
of

/WTH child = name and fur . " cuny
"

;
L table rows joined

* -
wzupg

parent
now MY their children sheet £

the names only ones that are curly

select * from parents , dogs
when child = name; *only rows of table where

name of one is child

of other (basically group)

Dot Expressions and Aliases

Joining Table with Itself second
select 2. child as first , b. child as second children dhildreh
from parents as a , parents as b -

where a. parent = b. parent and 2.child C b. child ¥
siblings ¥

Joining Multiple tables
Multiple Tables can be joined to yield all combos of rows from each

create table grandparents as
select a. parent as grand og ,

b. child as groupup
from parents Is a

, parents as b
when b.parent = a . child

select all grandparents w/ same fur as grandchildren

select gnudog from grandparents , dog as c
, dog as b

where c. name-- grand09 and
d. name = grandpup and

c. fur = d. fur

Numerical Expression
Expressions can contain function calls and arithmetic operators

(exp] as [name] , [expression] as [name] , .
. .

select Ceo lums] from [table] where [expression] order by [expression) ;
combine values : t , - , * ,

I , Ee
, and ,

or

transform values : abs, hound , not ,
-

compare values : C , C = ,
7
,
5-

,
a 7

,
t =

,
=

create table cold as

select name from cities when latitude >= 43;

create table distances as

select d - name as first, b. name as second,

60 * (b. latitude - a . latitude) as distance
from cities as a

, cities as b ;

String Expressions

④
"Tufa.Yukio!Yi ?ewo%Y.bind

10am longer stings

hello , world

o
Basic string manipulation is built in SQL

create table phrase Is select " hello , world
"
as s ;⑥ select subsIrl s , u , 2) 11 subs IV (s , intr (s ,

" ") th l) from phase;

④
strings can be used to represent structured values ,
crush tuba lists as select

" one
"

as car
,

-r- two , three ,
ur
"

as Cdr;

select substr (cctv ,
I
, instr (cdr ,

"

i

" t - t) as cadr from lists;

11120119 - Aggregation
Aggregakfunctions

select [columns] from Ctdbk] when [expression] order by [expression] ;
V

[expression] as (name)
, [expression] as [name]

An aggregate function in the [columns] clause computes a value

from a group of rows

MaX(kgQ
he

\
.

select man (legs) from animals ;
4

select Max (legs-weight) t 5 from animals ;
i

select Max lugs) , min (weight) from animals ;
416

select Max (weight) -miulhegs) from animals ;
- 2

select min (legs) , man
(weight) from animals

where kind c>
' tren

'

20

select avg (legs) from animals ;
3. 0

select count (*) from animals;
6

select count (distinct legs) from animals ;
2

select sum (distinct weight) from animals ;

4

Mixing Aggregate functions and single Values
An aggregate function also selects a row in the table

select Max (weight) ,
kind from animal ;

1200 I t -rex
select min (kind) , kind from animals;

car! Catlett
select Max (legs) ,

kind from animals ;
41 cat * no cwdr answer *

select avg (weight) , kind from animals ;
2009-3 I t-Ven

Groups
Grouping Rows
Rows in a table can be grouped, and aggregation is performed
on each group
select [columns] from Ctdbk] group by [expression]

having [expression] ;
The number of groups is the number of unique values

of an expression
select legs , Max (weight) from animals group by legs ;

I

leggmzulweightl:l.

I

11/22/19 - Databases
creak Table

Examples :
CREATE TABLE numbers (u , hole) :

Eevery n gets a note

CREATE TABLE numbers (n UNIQUE
, note) :

E
every n gets unique note only

CREATE TABLE numbers (h , note DEFAULT
"
no comment

")
E default comment is none

DROP noble

Insert
For a table t with 2 columns

to insert into 1 column :

insert into t (column) Values (valued :

to insert into both columns:

insert into t values (valued, valued :

Update

Update primes SET prime-- O when u>2 and nee 2=0

Delete

delete from primes when prime
-
- O ;

Python ie SQL

SQL injection attack
name:

"
Robert

'

) ; Drop table students '

s -
-

"

and =
'

INSERT INTO students VALUES (
' "
t name t

" ') ;
"

db . execute script (und)

↳ insert into Students VALUES (' Robert
') ; prop table students ; - -

'I
would become deleted

A- insteadA db . execute (" insert into students value C?)
"

, [name])
-
-

