2.3 Tutorial: Write a function that takes in a sequence s and a function fn and returns

a dictionary.

The values of the dictionary are lists of elements from s. Each element e in a list
should be constructed such that fn(e) is the same for all elements in that list. The
key for each value should be fn(e). For each element e in s, check the value that

calling fn(e) returns, and add e to the corresponding group.

*
dof sjjup—b n v (]

lambda p: p // 10) % * [13]

>>> group_by ([:

{1: [12, 141, 2: [23], 4: [451}
>>> group_by(range(-3, 4), lambda x: x * x) € [‘ﬁl
{0: [0]1, 1: [-1, 11, 4: [-2, 21, 9: [-3, 31}

()

LAV - L
ot " W“’& b M ydlow’)

MC& - i'g kk%? VW l(lwu“: “red
"ovw\a‘C‘ : Y owwo(i&"j

Juss fruilvy ["app\xﬂ — d

VIS

oy s (ol] = Pl
VLS © |
g 1€ PR (@ fudh
VIWLS (A | > Fy A

(j/

{“no\“ o [Mappus, S hovobaris
"WL\\M v, [v app’, “bavam J 3
colovs ["th”]. appond (“pomugnuire)

Co\ows =

2.4 Tutorial: Write a function that takes in a value x, a value el, and a list s and

adds as many el’s to the end of the list as there are x’s. Make sure to modify
the original list using list mutation techniques.

def add_this_many(x, el, s):
""" Adds el to the end of s the number of times x occurs
in s.
>>s =[1, 2, 4, 2, 1]
>>> add_this_many(1, 5, s)
>>> s
[1, 2, 4, 2, 1, 5, 5]
>>> add_this_many(2, 2, s)
>>> s
[1, 2, 4, 2, 1, 5, 5, 2, 2]

