2.3 Tutorial: Write a function that takes in a sequence s and a function $f n$ and returns a dictionary.

The values of the dictionary are lists of elements from s. Each element e in a list should be constructed such that fn(e) is the same for all elements in that list. The key for each value should be fn(e). For each element e in s, check the value that calling $f n(e)$ returns, and add e to the corresponding group.

\{0: [0], 1: $[-1,1], 4:[-2,2], 9:[-3,3]\}$
\{0: [0], 1: $[-1,1], 4:[-2,2], 9:[-3,3]\}$
"""
grouped $=$ \{\}
for
key =
\qquad __:
if key in grouped
else:
grouped[key] =

return grouped

$$
\begin{aligned}
& \text { dictionzties: }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { access } \\
\text { vines }
\end{array} \\
\begin{array}{l}
\text { adding } \\
\text { values: }
\end{array} \\
\end{array} \\
& \text { cheleing if if "pineapple" in fruits: } \\
& \text { values in } \\
& \text { false } \\
& \text { colors }=\{\text { "red": }[\text { "apples", "strowbewies" }] \\
& \text { "yellow": ["pineapple"."banans"] } \\
& \text { colors ["red"]. append ("pomegranate") }
\end{aligned}
$$

2.4 Tutorial: Write a function that takes in a value x, a value $e l$, and a list s and adds as many el's to the end of the list as there are x 's. Make sure to modify the original list using list mutation techniques.
def add_this_many(x, el, s):
""" Adds el to the end of s the number of times x occurs in s.
$\ggg s=[1,2,4,2,1]$
>>> add_this_many (1, 5, s)
>> s
[1, 2, 4, 2, 1, 5, 5]
>>> add_this_many (2, 2, s)
>> s
$[1,2,4,2,1,5,5,2,2]$
"""

